Jun Yaokawa, Daisuke Miura, Koichi Anzai, Youji Yamada, Hiroshi Yoshii Abstract The strength of four binary systems NaCl–Na2CO3, KCl–K2CO3, KCl–NaCl and K2CO3–Na2CO3 was investigated in order to develop expendable salt core for high pressure die casting processes. Four point bending test was conducted to determine the strength of specimens made from molten salts by using the permanent mold casting technique.
B. Fuchs and C. KörnerPublished Online:February 10, 2014pp 24-30 Abstract High pressure die casting is limited in its geometry since a lost core technology as with sand or low pressure casting is not state-of-the art. Using lost cores made from sodium chloride may be a solution for high pressure die casting. Due to the high dynamical forces
Renhe Huang &aamp; Baoping Zhang International Journal of Metalcasting volume 11, pages440–447 (2017)Cite this article Metricsdetails Abstract Soluble salt cores have been successfully used for the die casting of aluminum and magnesium alloys. However, it has not been reported that the soluble salt cores were used for zinc alloy die casting. In this paper, a soluble salt core system
Authors: Eliska Adamkova, Petr Jelinek, Jaroslav Beňo SAND TEAM spol.r.o., Frantisek Mikgovsky Abstract Application of pure inorganic salt-based cores has been known since the end of the 20th century, especially in the field of gravity and low-pressure die casting. The contemporary trend in technology leads to the use of the cores in the field of
Xiaolong Gong, Fuchu Liu, Xinwang Liu, Wenming Jiang & Zitian Fan International Journal of Metalcasting (2022)Cite this article Abstract A composite inorganic salt core with good water solubility and formability was proposed using potassium nitrate (KNO3) and potassium chloride (KCl) as base materials. The KNO3–KCl molar ratio has been optimized for the KNO3–KCl composite salt core, and
by Sebastian Kohlstädt 1,2,Michael Vynnycky 1,3,* andStephan Goeke 41Division of Processes, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, 100 44 Stockholm, Sweden2Volkswagen AG—Division of Components Manufacturing, Dr. Rudolf-Leiding-Platz 1, 34225 Baunatal, Germany3Department of Mathematics and Statistics, University of Limerick, Limerick V94 T9PX, Ireland4Institute of Mechanics, Kassel University, Mönchebergstr. 7, 34125 Kassel, Germany*Author to whom
Miguel Angel Reyes Belmonte and Colin D. CopelandUniversity of BathDrummond Hislop, George Hopkins, and Adrian SchmiederHiETA Technologies LtdScott BreddaGE PrecisionSam AkehurstUniversity of Bath Abstract Pressure and temperature levels within a modern internal combustion engine cylinder have been pushing to the limits of traditional materials and design. These operative conditions are due to the stringent emission
Jaroslav Beòo, Eli{ka Adámková, Franti{ek Mik{ovský, Petr JelínekV[B-Technical University of Ostrava, Faculty of Metallurgy and Materials Engineering, Department of Metallurgy and Foundry, listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republicjaroslav.beno@vsb.czPrejem rokopisa – received: 2013-09-26; sprejem za objavo – accepted for publication: 2014-09-05 1 INTRODUCTION The application of salt cores for the pre-casting of casting cavities and
AUTHORS P. Jelínek1, E. Adámková1, F. Mikšovský1, J. Beňo1 ABSTRACT A number of technologies is developed that substitute simple metal cores in the high-pressure casting technology. Soluble cores, namely on the salt basis, represent the highest prospect. The contribution gives the results of the production of salt cores by high-pressure squeezing and shooting with using a binder. Special attention
Sebastian Kohlstädt* and Michael VynnyckyDepartment of Materials Science and Engineering,KTH Royal Institute of Technology,Brinellvägen 23,100 44 Stockholm, SwedenEmail: skoh@kth.seEmail: michaelv@kth.se*Corresponding author Abstract In this work, the implementation of three turbulence models inside the open source C++ computational fluid dynamics (CFD) library OpenFOAM were tested in 2D and 3D to determine the viability of salt cores