Tag Archives: Al-Si alloy

7. Appearance of texturized surfaces: (a) stochastic and (b) regular arrangemen

Research on the Tribological Properties of a New Generation ofMulti-Layer Nanostructured PVD Coatings for Increasing theTechnological Lifetime of Moulds

Janette Brezinová1,* , Miroslav Džupon 2, Viktor Puchý2, Jakub Brezina 3, Pavlo Maruschak 4,Anna Guzanová3, Lýdia Sobotová5 and Miroslav Badida 5 Abstract This paper presents the results of research focused on increasing the lifespan of HPDCmoulds for casting aluminium alloys by applying duplex PVD coatings in combination with lasertexturing the base material before the coatings’

Read More

The characterization of porosity and externally solidified crystals in a high pressure die casting hypoeutectic Al-Si alloy using a newly developed ceramic shot sleeve

The characterization of porosity and externally solidified crystals in a high pressure die casting hypoeutectic Al-Si alloy using a newly developed ceramic shot sleeve

X.Y. Jiao ab, P.Y. Wang c, Y.X. Liu d, W.N. Liu e, A.X. Wan d, L.J. Shi c, C.G. Wang c, S.M. Xiong dShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.matlet.2024.136045Get rights and content Abstract The effective methods to regulating porosity and externally solidified crystals (ESCs) have been remained as a challenging task for high pressure die casting (HPDC) automobile parts. In this work, a newly designed ceramic shot sleeve is proposed for reducing porosity and optimizing ESCs. As a result, both porosity

Read More

Fig. 3. (a) Schematic of four-point reversed bending set-up used in this study. Dimensions in mm. (b) Picture of the bending fatigue test set-up. The specimen was fixed by four fixtures, where two outer fixtures were connected to upper moveable shaft for applying the loading. The two internal fixtures were connected to the fixed base in the bottom. Between the fixture and the shaft/base were thin steel spring to ensure that the specimens can bend flexibly. To show the details more clearly, the distance between each fixture shown in the picture is larger than the actual distances used in this study.

Four-point bending fatigue behavior of rheocast AlSi7Mg0.3 alloy: Role of the surface liquid segregation

Author links open overlay panelQing Zhang a, Stefan Jonsson b, Anders E.W. Jarfors aShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.ijfatigue.2023.107791Get rights and content Under a Creative Commons licenseopen access Highlights Abstract The surface liquid segregation (SLS) layer in semisolid casting presents higher hardness than the surface of specimens cast using high-pressure die casting (HPDC). Bending fatigue tests showed that semisolid castings present better fatigue properties at

Read More

Fig. 3. (a) Schematic of four-point reversed bending set-up used in this study. Dimensions in mm. (b) Picture of the bending fatigue test set-up. The specimen was fixed by four fixtures, where two outer fixtures were connected to upper moveable shaft for applying the loading. The two internal fixtures were connected to the fixed base in the bottom. Between the fixture and the shaft/base were thin steel spring to ensure that the specimens can bend flexibly. To show the details more clearly, the distance between each fixture shown in the picture is larger than the actual distances used in this study.

Four-point bending fatigue behavior of rheocast AlSi7Mg0.3 alloy: Role of the surface liquid segregation

Qing Zhang a, Stefan Jonsson b, Anders E.W. Jarfors a aJönköping University, School of Engineering, Materials and Manufacturing, 551 11 Jönköping, SwedenbKTH Royal Institute of Technology, School of Industrial Engineering and Management, Materials Science and Engineering, SE-100 44 Stockholm, Sweden Abstract The surface liquid segregation (SLS) layer in semisolid casting presents higher hardness than the surface of specimens cast using high-pressure die casting

Read More

Figure 6. Fluid velocity vector of the cylindrical riser tube (left) and the cone-shaped tube (right) [33]

Low- and High-Pressure Casting Aluminum Alloys: A Review

WRITTEN BY Helder Nunes, Omid Emadinia, Manuel F. Vieira and Ana Reis Submitted: December 5th, 2022 Reviewed: January 7th, 2023 Published: February 3rd, 2023 DOI: 10.5772/intechopen.109869 Abstract Low- pressure casting and high-pressure casting processes are the most common liquid-based technologies used to produce aluminum components. Processing conditions such as cooling rate and pressure level greatly influence the

Read More

Figure 4. General scheme of the LPC cycle [33].

Low- and High-Pressure Casting Aluminum Alloys: A Review

WRITTEN BY Helder Nunes, Omid Emadinia, Manuel F. Vieira and Ana Reis Submitted: December 5th, 2022 Reviewed: January 7th, 2023 Published: February 3rd, 2023 DOI: 10.5772/intechopen.109869 FROM THE EDITED VOLUME Recent Advancements in Aluminum Alloys [Working Title] Dr. Shashanka Rajendrachari CHAPTER METRICS OVERVIEW 13 Chapter DownloadsView Full Metrics REGISTER TO DOWNLOAD FOR FREE Share Cite ADVERTISEMENT ADVERTISEMENT Abstract Low-

Read More

Figure 3. Casting of SB 55 variant with gating system.

Influence of HPDC Process Parameters on the Microstructure of EC Electromotor Housing

Influence of HPDC Process Parameters on the Microstructure of EC Electromotor Housing Marek Brůna 1, Martin Medňanský 1,*, Marek Matejka 1 and Radka Podprocká 2 1Department of Technological Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia 2Rosenberg-Slovakia s.r.o., Kováčska 38, 044 25 Medzev, Slovakia *Author to whom correspondence should be addressed. Metals 2023, 13(2), 295; https://doi.org/10.3390/met13020295 Received:

Read More

Figure 10.2. Salt core produced in high temperature and long time

Development of Salt Core Use as an Alternative in Aluminum Alloy Castings.

Tülay Hançerlioğlu 1*1 R&D Department Nemak İzmir Döküm San.A.Ş. tulay.hancerlioglu@nemak.com Orcid: 0000-0003-2373-4405Received: 6 December 2021Accepted: 1 June 2022DOI: 10.18466/cbayarfbe.1033177 Abstract For creating complex geometric shapes in the cast part, salt was used to produce core instead of sandwhich is thermo-chemical or chemical process using resin as a binder. In salt core casting, the efficiencywill be

Read More

Fig. 2. Comparison of strengths of salt cores squeezed and shot from different salt kinds (mean value of 6 cores; fraction 0.063 – 1.0 mm; A = squeezed cores (104 MPa); B = shot ones (binder Na – water glass 7.5 – 8.0 bars)

Lost Cores for High-Pressure Die Casting

. Jelínek, E. Adámková*Department of Metallurgy and Foundry Engineering, VŠB-Technical University of Ostrava, listopadu 2172/15, 708 33 Ostrava – Poruba, Czech Republic*Corresponding author. E-mail address: eliska.adamkova@vsb.czReceived 04.03.2014; accepted in revised form 30.03.2014 Abstract Development of salt cores prepared by high-pressure squeezing and shooting with inorganic binders has shown a high potential of the given technology

Read More

Figure 15. R-HPDC automobile shock absorber part.

R-HPDC Process with Forced Convection Mixing Device for Automotive Part of A380 Aluminum Alloy

by Bing Zhou,Yonglin Kang *,Mingfan Qi,Huanhuan Zhang andGuoming ZhuSchool of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China*Author to whom correspondence should be addressed.Materials2014, 7(4), 3084-3105; https://doi.org/10.3390/ma7043084Received: 24 March 2014 / Revised: 4 April 2014 / Accepted: 4 April 2014 / Published: 15 April 2014(This article belongs to the Special Issue Light Alloys and Their Applications)

Read More