Tag Archives: Aluminum Casting

Ductile fracture prediction of HPDC aluminum alloy based on a shear-modified GTN damage model

Ductile fracture prediction of HPDC aluminum alloy based on a shear-modified GTN damage model

Ductile fracture prediction of HPDC aluminum alloy based on a shear-modified GTN damage model Author links open overlay panelYongfa Zhang ab, Jiang Zheng cd, Fuhui Shen b, Dongsong Li b, Sebastian Münstermann b, Weijian Han e, Shiyao Huang e, Tianjiao Li cShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.engfracmech.2023.109541Get rights and content Abstract In this paper, we investigate how the shear-modified Gurson-Tvergaard-Needleman (GTN) model can be used to reveal the effect of manufacturing-process-induced porosity on the scatter of ductile fracture properties of a

Read More

Volumetric distribution of porosities in a 3D reconstructed CT image at 60% transparency.

Detection of Porosity in Impregnated Die-Cast Aluminum Alloy Piece by Metallography and Computer Tomography

by  Mihály Réger 1, József Gáti 1, Ferenc Oláh 1,2, Richárd Horváth 1,*, Enikő Réka Fábián 1 and Tamás Bubonyi 3 1Bánki Donát Faculty of Mechanical and Safety Engineering, University of Óbuda, H-1081 Budapest, Hungary 2Doctoral School on Materials Sciences and Technologies, University of Óbuda, H-1081 Budapest, Hungary 3Institute of Metal Formation and Nanotechnology, University of Miskolc, H-3515 Miskolc, Hungary *Author to

Read More

Figure 6. Fluid velocity vector of the cylindrical riser tube (left) and the cone-shaped tube (right) [33]

Low- and High-Pressure Casting Aluminum Alloys: A Review

WRITTEN BY Helder Nunes, Omid Emadinia, Manuel F. Vieira and Ana Reis Submitted: December 5th, 2022 Reviewed: January 7th, 2023 Published: February 3rd, 2023 DOI: 10.5772/intechopen.109869 Abstract Low- pressure casting and high-pressure casting processes are the most common liquid-based technologies used to produce aluminum components. Processing conditions such as cooling rate and pressure level greatly influence the

Read More

Development of High-Ductility and Low-Hot-Tearing-Susceptibility Non-heat Treatment Al–Mg–Mn-Based Die Casting Alloy for Automotive Structural Parts

Development of High-Ductility and Low-Hot-Tearing-Susceptibility Non-heat Treatment Al–Mg–Mn-Based Die Casting Alloy for Automotive Structural Parts

International Journal of Metalcasting (2023)Cite this article Abstract Non-heat-treated Al–Mg-based die casting alloys have been developed for the structural parts of automobiles. In previous studies, alloy compositions with at least 1.0%Si have been proposed to reduce the hot tearing susceptibility (HTS). On the other hand, the increase in the Si content reduces the ductility. For some

Read More

Figure 4. General scheme of the LPC cycle [33].

Low- and High-Pressure Casting Aluminum Alloys: A Review

WRITTEN BY Helder Nunes, Omid Emadinia, Manuel F. Vieira and Ana Reis Submitted: December 5th, 2022 Reviewed: January 7th, 2023 Published: February 3rd, 2023 DOI: 10.5772/intechopen.109869 FROM THE EDITED VOLUME Recent Advancements in Aluminum Alloys [Working Title] Dr. Shashanka Rajendrachari CHAPTER METRICS OVERVIEW 13 Chapter DownloadsView Full Metrics REGISTER TO DOWNLOAD FOR FREE Share Cite ADVERTISEMENT ADVERTISEMENT Abstract Low-

Read More

A heuristic approach to meet geometric tolerance in High Pressure Die Casting

A heuristic approach to meet geometric tolerance in High Pressure Die Casting

G.CampatelliA.Scippa Abstract In High Pressure Die Casting (HPDC), geometrical distortions usually happen during the cooling phase, due to the reduced cooling time and the high thermal gradient inside the product itself. This phenomenon affects most the thin walled products. The usual die design practice considers only the linear shrinking of the product during the cooling as a consequence of

Read More

Fig. 1. (a) Cold chamber high pressure die casting machine and (b) dieeset in the machine, and (c) cross section of dieeset showing the round tensile test bars casted by the die.

High strength and ductility aluminium alloy processed by high pressure die casting

XixiDongaHailinYangbXiangzhenZhuaShouxunJiaShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.jallcom.2018.09.260Get rights and content Abstract A high strength (Yield strength ≥ 320 MPa) and high ductility (Tensile elongation ≥ 10%) die–cast aluminium alloy was first developed. The AlSiCuMgMn alloy processed by high pressure die casting can provide the high yield strength of 321 MPa, the high ultimate tensile strength of 425 MPa and the high ductility of 11.3%, after solution treated at

Read More

Macro Porosity Formation: A Study in High Pressure Die Casting

Macro Porosity Formation: A Study in High Pressure Die Casting

David Blondheim Jr. & Alex Monroe Abstract Porosity formation in high pressure die casting (HPDC) impacts mechanical properties and casting quality. Much is published regarding micro porosity and its impact on mechanical properties, but there is limited research on the actual formation of macro porosity. In production applications, macro porosity plays a critically important role in casting

Read More

Ductility prediction of HPDC aluminum alloy using a probabilistic ductile fracture model

Ductility prediction of HPDC aluminum alloy using a probabilistic ductile fracture model

YongfaZhangabc FuhuiShenb JiangZhengcd SebastianMünstermannb TianjiaoLic WeijianHanef ShiyaoHuangef Highlights •The microstructure and ductile fracture characteristics of the aluminum alloy (Aural-2) produced by high-pressure die casting have been thoroughly characterized via experimental and numerical approaches. •Stochastic ductile fracture property observed over a wide range of stress states of the studied material could be captured by the proposed classic ductile damage model

Read More

Figure 16. Cross-sectional view of a cast part with a salt core.

Effects of Composition on the Physical Properties of Water-Soluble Salt Cores

수용성 염핵의 물리적 특성에 대한 조성의 영향 Cihan Cantas &  Bedri Baksan  International Journal of Metalcasting volume 15, pages839–851 (2021)Cite this article 175 Accesses 1 Citations Metrics Abstract The demand for producing essential cast parts and the design requirements for superior engineering performance have increased in recent years. Sand cores used in conventional aluminum cast parts are harmful to the environment,

Read More