Tag Archives: High pressure die casting

Figure 4. General scheme of the LPC cycle [33].

Low- and High-Pressure Casting Aluminum Alloys: A Review

WRITTEN BY Helder Nunes, Omid Emadinia, Manuel F. Vieira and Ana Reis Submitted: December 5th, 2022 Reviewed: January 7th, 2023 Published: February 3rd, 2023 DOI: 10.5772/intechopen.109869 FROM THE EDITED VOLUME Recent Advancements in Aluminum Alloys [Working Title] Dr. Shashanka Rajendrachari CHAPTER METRICS OVERVIEW 13 Chapter DownloadsView Full Metrics REGISTER TO DOWNLOAD FOR FREE Share Cite ADVERTISEMENT ADVERTISEMENT Abstract Low-

Read More

Figure 3. Casting of SB 55 variant with gating system.

Influence of HPDC Process Parameters on the Microstructure of EC Electromotor Housing

Influence of HPDC Process Parameters on the Microstructure of EC Electromotor Housing Marek Brůna 1, Martin Medňanský 1,*, Marek Matejka 1 and Radka Podprocká 2 1Department of Technological Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia 2Rosenberg-Slovakia s.r.o., Kováčska 38, 044 25 Medzev, Slovakia *Author to whom correspondence should be addressed. Metals 2023, 13(2), 295; https://doi.org/10.3390/met13020295 Received:

Read More

Figure 1. High pressure die-casting [1].

An Industrial Perspective on Magnesium Alloy Wheels: A Process and Material Design

An Industrial Perspective on Magnesium Alloy Wheels: A Process and Material Design Miaomiao Wang1,21China Copper Institute of Engineering and Technology, Beijing, China.2Kunming Metallurgical Research Institute Co., Ltd. Beijing Branch, Beijing, China.DOI: 10.4236/msa.2023.141002PDFHTML XML18 Downloads   134 Views Abstract Light weights wheels improve vehicle performance with respect to road handling, cornering as well providing fuel economy and reduced greenhouse gas emissions. Aluminum

Read More

Figure 9- Left: Schematics of a conventional HPDC cold chamber machine [14]; Right: Typical layout of a component produced by a cold chamber machine [15].

High Pressure Die Casting of Zamak Alloys

Steven Richard Pires de OliveiraDissertação de MestradoOrientador na FEUP: Prof. Doutor Rui Jorge de Lemos NetoOrientador no INEGI: Doutora Inês Vieira de Oliveira Abstract The high pressure die casting process has undergone major advances in recent years, due to its increasing use in the automotive sector. Although aluminum alloys are the most widely used, the

Read More

Fig. 1 - Cross beams: -1) HPDC aluminum, 2) LPDC and extruded aluminum, 3) LPDC and CFRP, 4) Extruded aluminum

Numerical and experimental analysis of high pressure die casting Aluminum suspension cross beam for light commercial vehicles

S. Cecchel, D. Ferrario The purpose of the present paper is to enhance and deepen the lightweight optimization in automotive, in particularfor commercial vehicles and buses. In detail, aim of this research is to develop a technically reliable and cost effectivesafety component for Light Commercial Vehicles (LCVs) in aluminum alloy. At this purpose, different solutions

Read More

A heuristic approach to meet geometric tolerance in High Pressure Die Casting

A heuristic approach to meet geometric tolerance in High Pressure Die Casting

G.CampatelliA.Scippa Abstract In High Pressure Die Casting (HPDC), geometrical distortions usually happen during the cooling phase, due to the reduced cooling time and the high thermal gradient inside the product itself. This phenomenon affects most the thin walled products. The usual die design practice considers only the linear shrinking of the product during the cooling as a consequence of

Read More

Fig. 3. Axisymmetric FE model of the solid, containing an elliptic pore with applied boundary conditions and inner pore pressure.

Conditions for blister formation during thermal cycles of Al–Si–Cu–Fe alloys for high pressure die-casting

OksanaOzhoga-MaslovskajaElisabettaGariboldiJannis NicolasLemkeShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.matdes.2015.12.003Get rights and content Highlights • Critical conditions for blister formation of Al–9Si–3Cu–Fe alloy are identified via a FE model.• Blister formation is modeled for wide range of temperatures, pore pressure, shape, location, and size.• Strain field shows blister formation related to strain localization, depending of pore geometry.• Lamina-shaped discontinuities

Read More

Fig. 1. (a) Cold chamber high pressure die casting machine and (b) dieeset in the machine, and (c) cross section of dieeset showing the round tensile test bars casted by the die.

High strength and ductility aluminium alloy processed by high pressure die casting

XixiDongaHailinYangbXiangzhenZhuaShouxunJiaShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.jallcom.2018.09.260Get rights and content Abstract A high strength (Yield strength ≥ 320 MPa) and high ductility (Tensile elongation ≥ 10%) die–cast aluminium alloy was first developed. The AlSiCuMgMn alloy processed by high pressure die casting can provide the high yield strength of 321 MPa, the high ultimate tensile strength of 425 MPa and the high ductility of 11.3%, after solution treated at

Read More

Fig. 1 – Typical aluminum rotor and squirrel cage structure after dissolution of the iron laminations

Use Of High Temperature Die Material & Hot Dies For
High Pressure Die Casting Pure Copper & Copper Alloys

D. T. PetersCopper Development Association Inc.Hilton Head Island, SCJ. G. CowieCopper Development Association Inc.New York, NYE. F. Brush, Jr.Copper Development Association Inc.Weston, MAS. P. MidsonCopper Development Association Inc.Denver, CO Abstract Little use has been made of pressure die casting for the manufacture of copper or copper alloy parts due in large part to poor economics

Read More

Fig. 6. Pit-tail test result of HPDC MRI 260D tensile bar (as-cast).

Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications

Gerry GangWangJ.P.WeilerMeridian Lightweight Technologies, Strathroy, Ontario N7G 4H6, Canada Abstract The use of magnesium alloy high pressure die cast (HPDC) components for structural applications, especially in the automotive and transportation industries, where weight reduction is of a great concern, is increasing. As new applications are developing and existing applications are becoming more complex, there is a need

Read More