Tag Archives: High pressure die casting

A predictive model for the evolution of the thermal conductance at the casting–die interfaces in high pressure die casting

A predictive model for the evolution of the thermal conductance at the casting–die interfaces in high pressure die casting

A.HamasaiidaG.DouraT.LouloucM.S.DarguschbaUniversité de Toulouse, INSA, UPS, Mines Albi, ISAE, ICA (Institut Clément Ader), CROMeP, Campus Jarlard, F-81013 Albi Cedex 09, FrancebCAST Cooperative Research Centre, School of Engineering, The University of Queensland, St. Lucia, Brisbane QLD 4072, AustraliacUniversité de Bretagne-Sud, LIMAT B, rue de Saint-Maudé, 56321 Lorient, France Abstract An analytical model is proposed to predict the

Read More

Macro Porosity Formation: A Study in High Pressure Die Casting

Macro Porosity Formation: A Study in High Pressure Die Casting

David Blondheim Jr. & Alex Monroe Abstract Porosity formation in high pressure die casting (HPDC) impacts mechanical properties and casting quality. Much is published regarding micro porosity and its impact on mechanical properties, but there is limited research on the actual formation of macro porosity. In production applications, macro porosity plays a critically important role in casting

Read More

Microstructure, segregation and fracture behavior of 6061 aluminum alloy samples formed by semi-solid or traditional high pressure die casting

Microstructure, segregation and fracture behavior of 6061 aluminum alloy samples formed by semi-solid or traditional high pressure die casting

반고체 또는 전통적인 고압 다이 캐스팅으로 형성된 6061 알루미늄 합금 샘플의 미세 구조, 분리 및 파괴 거동 NaiyongLiWeiminMaoXiaoxinGengRongshengZhangBingdongYan Highlights •Semi-solid 6061 aluminum alloy slurry prepared by the SCP process. •Rheo-HPDC can improve and refine the coarse dendritic microstructures in the traditional HPDC samples. •Segregation is improved by increasing the Si content in the alloy. •The

Read More

Fig. 1 – Typical aluminum rotor and squirrel cage structure after dissolution of the iron laminations.

Use Of High Temperature Die Material & Hot Dies For High Pressure Die Casting Pure Copper & Copper Alloys

Abstract Little use has been made of pressure die casting for the manufacture of copper or copper alloy parts due in large part to poor economics resulting from short die life in casting these high melting metals. A research program initiated in 1997 was driven by the promise of a signifi cant increase in the

Read More

Fig. 1 - Cross beams: -1) HPDC aluminum, 2) LPDC and extruded aluminum, 3) LPDC and CFRP, 4) Extruded aluminum

Numerical and experimental analysis
of a high pressure die casting Aluminum
suspension cross beam
for light commercial vehicles

S. Cecchel, D. FerrarioThe purpose of the present paper is to enhance and deepen the lightweight optimization in automotive, in particular for commercial vehicles and buses. In detail, aim of this research is to develop a technically reliable and cost effective safety component for Light Commercial Vehicles (LCVs) in aluminum alloy. At this purpose, different

Read More

Fig. 3 Photographs of specimens at ambient temperature. (a) KCl–30 mol%NaCl. (b) K2CO3–50 mol% Na2CO3.

Strength of Salt Core Composed of Alkali Carbonate and Alkali Chloride Mixtures Made by Casting Technique

Jun Yaokawa, Daisuke Miura, Koichi Anzai, Youji Yamada, Hiroshi Yoshii Abstract The strength of four binary systems NaCl–Na2CO3, KCl–K2CO3, KCl–NaCl and K2CO3–Na2CO3 was investigated in order to develop expendable salt core for high pressure die casting processes. Four point bending test was conducted to determine the strength of specimens made from molten salts by using the permanent mold casting technique.

Read More

Mesh resolution consideration for the viability prediction of lost salt cores in the high pressure die casting process

Mesh resolution consideration for the viability prediction of lost salt cores in the high pressure die casting process

B. Fuchs and C. KörnerPublished Online:February 10, 2014pp 24-30 Abstract High pressure die casting is limited in its geometry since a lost core technology as with sand or low pressure casting is not state-of-the art. Using lost cores made from sodium chloride may be a solution for high pressure die casting. Due to the high dynamical forces

Read More

Figure 1. Photographs of ‘‘triplet’’ salt core and ‘‘triplet’’ die casting blank.

Study on the Composition and Properties of Salt Cores for Zinc Alloy Die Casting

Renhe Huang &aamp;  Baoping Zhang  International Journal of Metalcasting volume 11, pages440–447 (2017)Cite this article Metricsdetails Abstract Soluble salt cores have been successfully used for the die casting of aluminum and magnesium alloys. However, it has not been reported that the soluble salt cores were used for zinc alloy die casting. In this paper, a soluble salt core system

Read More

Properties Optimization and Strengthening Mechanism of KNO3–KCl Water-Soluble Composite Salt Core for Hollow Zinc Alloy Die Castings

Properties Optimization and Strengthening Mechanism of KNO3–KCl Water-Soluble Composite Salt Core for Hollow Zinc Alloy Die Castings

Xiaolong Gong,  Fuchu Liu,  Xinwang Liu,  Wenming Jiang &  Zitian Fan  International Journal of Metalcasting (2022)Cite this article Abstract A composite inorganic salt core with good water solubility and formability was proposed using potassium nitrate (KNO3) and potassium chloride (KCl) as base materials. The KNO3–KCl molar ratio has been optimized for the KNO3–KCl composite salt core, and

Read More

Figure 7. The velocity magnitude field at the times of impact and immediately afterwards: (a) t⋅UR = 0.2; (b) t⋅UR = 0.205; (c) t⋅UR = 0.21. Here, U=Uin with Uin = 20 ms−1.

On the CFD Modelling of Slamming of the Metal Melt in High-Pressure Die Casting Involving Lost Cores

by Sebastian Kohlstädt 1,2,Michael Vynnycky 1,3,* andStephan Goeke 41Division of Processes, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, 100 44 Stockholm, Sweden2Volkswagen AG—Division of Components Manufacturing, Dr. Rudolf-Leiding-Platz 1, 34225 Baunatal, Germany3Department of Mathematics and Statistics, University of Limerick, Limerick V94 T9PX, Ireland4Institute of Mechanics, Kassel University, Mönchebergstr. 7, 34125 Kassel, Germany*Author to whom

Read More