Tag Archives: Review

Fig. 1. a) Pin holes observed in the top side casting; b) Blow holes observed in tapped holes; c) Porosity is observed in top side of the casting.

Numerical and experimental approach to eliminate defects in al alloy pump- crank case processed through gravity die casting route

S.AravindP.RagupathiG.VigneshDepartment of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021, India Received 30 June 2020, Accepted 14 July 2020, Available online 14 August 2020. Abstract A numerical investigation was carried out with the help of computer based casting simulation software to eliminate defects such as shrinkage due to solidification, cracks, imperfect

Read More

Figure 1. Sketches of selected specimens for microstructure observation.

Crack Initiation Mechanism in Casting AC4B Aluminum Alloy Parts with Complex Structure

by Daliang Yu 1,Wen Yang 2,Wanqing Deng 2,Songzhu Zhu 2,Qingwei Dai 1,3,* andDingfei Zhang 31School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China2Chongqing Zhicheng Machinery Co., LTD, Chongqing 400039, China3College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China*Author to whom correspondence should be addressed.Metals2021, 11(1), 97; https://doi.org/10.3390/met11010097Received: 27 November 2020 / Revised: 25 December 2020 / Accepted:

Read More

Fig. 1 Schematic diagram of a typical stir casting apparatus for the production of MMCs. Reproduced from Kok, M., 2005. Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. Journal of Materials Processing Technology 161, 381–387.

Casting Routes for Production of Metallic Based Composite Parts

R Palanivel, Shaqra University, Riyadh, Saudi ArabiaI Dinaharan, Tsinghua University, Beijing, ChinaRF Laubscher, University of Johannesburg, Johannesburg, South Africa 금속 기반 복합 부품 생산을 위한 주조 경로 Introduction A composite material is a material system consisting of a mixture or combination of two or more nano-micro- or macro-based elements with a separating interface where the

Read More

Die casting is mostly used because many parts need to be manufactured in a short amount of time (hundreds to thousands per day) with high accuracy. Parts like valve covers, wheels, transmission housings, engine block, wheel spacer, carburetor, impellers and fan clutch, alternator housing, airbag gas generator housing, etc. are all modes through the aluminum die casting method. Automobile parts require uniformity and high surface finish which can be accomplished by using casting methods that work in a controlled environment- pressure dies casting. Die casting was originally developed specifically for automotive applications [28]. The idea is to produce parts that are light, easy to handle, and cheap. Thus, die casting is widely applied to zinc and aluminum which are lighter than cast iron. Figure 2 shows the aluminum die-cast parts of a car. PEGASUS has been supplying quality aluminum die-cast auto parts to the automobile industry with our stable production system since we started this business in 2007 [27]. At present, we are supplying 60 kinds of die-cast products with our unique mold design and casting technology in addition to the processing technology we have been cultivating in the industrial sewing machine industry [29]. Aluminum or Al-Si alloys are used for Die casting. During this process, molten metal is injected at high pressure into a die (made of metal) which is a permanent mold comprising of two parts of the desired shape attached [30].

A brief review of the technology in piston machining to goal the product localization in Vietnam

Minh Quang Chau†, Danh Chan Nguyen‡*, Dinh Tuyen Nguyen‡, Viet Duc Bui‡†*† Faculty of Mechanical Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam‡ Institute of Mechanical Engineering, Ho Chi Minh City University of Transport, Ho Chi Minh city, Vietnam‡† Institute of Engineering, Ho Chi Minh city University of Technology (HUTECH),

Read More

Figure 1. Crank case specimen produced with the HPDC process.

Minimizing the Casting Defects in High Pressure Die Casting Using Taguchi Analysis

Authors Surkhail Tariq 1  Adnan Tariq   2  Manzar Masud 3  Zabdur Rehman  4 1 Department of Mechanical Engineering, Wah Engineering College, University of Wah, Wah Cantt 47040, Pakistan 2 Department of Mechanical Engineering, Wah Engineering College, University of Wah, Wah Cantt 47040,Pakistan 3 Department of Mechanical Engineering, Capital University of Science and Technology, Islamabad 44000, Pakistan 4 Department of Mechanical Engineering, Air University

Read More

Fig. 7. Cost and mass scaling for the motor subsystems to estimate motor costs for the AHSS and Al lightweight design.

Improvements in electric vehicle battery technology influence vehicle lightweighting and material substitution decisions

Joshua Thomas JamesonBurda, Elizabeth A.Moorea, HeshamEzzatbRandolphKirchainaRichardRothaa Materials Systems Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Ave, E19-695, Cambridge, MA 02139, United Statesb WorldAuto Steel/American Iron and Steel Institute, 2000 Town Center, Suite 320, Southfield, MI 48075, United States Highlights Global demand for and adoption of battery electric vehicles is on the rise. To achieve increased

Read More

Fig. 1. Aluminium Die Cast Parts.

Automobile Parts Casting-Methods and Materials Used: A Review

Madhav Goenkaa, Chico Nihala, Rahul Ramanathana, Pratyaksh Guptaa, Aman Parashara, Joel Jb*aB.Tech Mechanical Engineering,Vellore Institute of Technology, Katpadi,Vellore, TamilNadu, India b*Assistant Professor (senior),Vellore Institute of Technology, Katpadi,Vellore, TamilNadu, India Abstract Automobiles are becoming more and more sophisticated with every passing year. Manufacturers have been trying their best to bring down the kerb weight of their

Read More

Figure 6. The pressure field at the times of impact and immediately afterwards

On the CFD Modelling of Slamming of the Metal Melt in High-Pressure Die Casting Involving Lost Cores

by Sebastian Kohlstädt 1,2,Michael Vynnycky 1,3,* andStephan Goeke 41Division of Processes, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, 100 44 Stockholm, Sweden2Volkswagen AG—Division of Components Manufacturing, Dr. Rudolf-Leiding-Platz 1, 34225 Baunatal, Germany3Department of Mathematics and Statistics, University of Limerick, Limerick V94 T9PX, Ireland4Institute of Mechanics, Kassel University, Mönchebergstr. 7, 34125 Kassel, Germany*Author to whom

Read More

Figure 6. Steering knuckle die model (a) and finite element model (b).

Accurate Simulation of Complex Temperature Field in Counter-Pressure Casting Process Using A356 Aluminum Alloy

Yuncan Tian, Dongye Yang, Mengqi Jiang, and Bo HeResearch Center of High-Temperature Alloy Precision Forming, School of Materials Engineering, Shanghai University ofEngineering Science, Shanghai 201620, China International Journal of Metalcasting volume 15, pages259–270 (2021)Cite this article Abstract Automobile steering knuckle is an important part of the steering system, which is subjected to significant impacts and loads during its

Read More

Figure 1 A typical structure of CPU package and heat sink module.

Challenges in Cooling Design of CPU Packages for High-Performance Servers

Abstract Jie WeiCorporate Product Technology Unit, Fujitsu Limited , Kawasaki , Japan Cooling technologies that address high-density and asymmetric heat dissipation in CPU packages of high-performance servers are discussed. Thermal management schemes and the development of associated technologies are reviewed from a viewpoint of industrial application. Particular attention is directed to heat conduction in the

Read More