Tag Archives: Electric vehicles

Figure 1. Diagrammatic representation of a squirrel-cage induction motor.

Thermal Analysis and Cooling Strategies of High-Efficiency Three-Phase Squirrel-Cage Induction Motors—A Review

by Yashwanth Reddy Konda 1, Vamsi Krishna Ponnaganti 2, Peram Venkata Sivarami Reddy 3,R. Raja Singh 4, Paolo Mercorelli 5,*, Edison Gundabattini 6,* and Darius Gnanaraj Solomon 7 Abstract In recent times, there has been an increased demand for electric vehicles. In this context, the energy management of the electric motor, which are an important constituent of electric vehicles, plays a pivotal role. A

Read More

Kaolinite and SiO2 ink coating fracture surface EDS & SEM images.

Energy efficiency of smelting of scrap aluminium in HPDC facilities

So-Yeon Yoo1,2, Ahrom Ryu1,2, Min-Seok Jeon3, Dongkyun Kim4, Kiwon Hong4, Sahn Nahm2, and Ji-Won Choi1,5,+ Abstract The aluminium industry is anticipated to witness a surge in demand, with projections of a two to three-fold increase by 2050. Meeting environmental objectives and addressing the growing emphasis on sustainability from both the industry and consumers seeking eco-friendly

Read More

Al Alloys and Manufacturing Processes for Lightweight Applications in Electric Vehicles

Al Alloys and Manufacturing Processes for Lightweight Applications in Electric Vehicles

Abstract. Due to increasing environmental concerns, battery-powered electric vehicles (BEV) have gained popularity in the automotive for the past few years. An induction motor is an essential component of the propulsion system in integrated BEVs working on different operating conditions [1]. Since a rotor of the induction motor is configured with an electrical sheet, a

Read More

Figure 2. Look-up-tables for basic motor characteristics.

Automotive Lightweight Design: Simulation Modeling of Mass-Related Consumption for Electric Vehicles

자동차 경량 설계: 전기 자동차의 대량 관련 소비 시뮬레이션 모델링 by Francesco Del Pero *,Lorenzo Berzi,Andrea Antonacci andMassimo DeloguDepartment of Industrial Engineering, University of Florence, Via di S. Marta 3, 50139 Florence, Italy*Author to whom correspondence should be addressed.Machines2020, 8(3), 51; https://doi.org/10.3390/machines8030051Received: 14 August 2020 / Revised: 30 August 2020 / Accepted: 31 August 2020 / Published: 3 September 2020 Abstract 차량 경량화와 관련된 수명 주기

Read More

Figure 2. Look-up-tables for basic motor characteristics.

Automotive Lightweight Design: Simulation Modeling of Mass-Related Consumption for Electric Vehicles

by Francesco Del Pero *,Lorenzo Berzi,Andrea Antonacci andMassimo DeloguDepartment of Industrial Engineering, University of Florence, Via di S. Marta 3, 50139 Florence, Italy*Author to whom correspondence should be addressed.Machines2020, 8(3), 51; https://doi.org/10.3390/machines8030051Received: 14 August 2020 / Revised: 30 August 2020 / Accepted: 31 August 2020 / Published: 3 September 2020 Abstract A thorough assessment of Life-Cycle effects involved by vehicle lightweighting needs a rigorous evaluation of

Read More

Figure 7. Detail of fixing pins in the fixed die cavity for placing the aluminium foam.

Aluminium Foam and Magnesium Compound Casting Produced by High-Pressure Die Casting

by Iban Vicario 1,*,Ignacio Crespo 2,†,Luis Maria Plaza 2,Patricia Caballero 1,† andIon Kepa Idoiaga 3,‡1Department of Foundry and Steel making, Tecnalia Research & Innovation, c/Geldo, Edif. 700, E-48160 Derio, Spain2Department of Aerospace, Tecnalia Research & Innovation, c/Mikeletegi 2, E-20009 Donostia, Spain3Industrias Lebario, c/Arbizolea 4, E-48213 Izurza, Spain*Author to whom correspondence should be addressed.†These authors contributed equally to this work.‡This author supervised this

Read More

Figure 1. Schematics explaining the vehicle Life Cycle Assessment that encompasses all phases of the product cycle, from raw material extraction to end-of-life recycling and disposal.

Current Trends in Automotive Lightweighting Strategies and Materials

settingsOpen AccessReview Current Trends in Automotive Lightweighting Strategies and Materials by Frank CzerwinskiCanmetMATERIALS, Natural Resources Canada, Hamilton, ON L8P 0A5, CanadaAcademic Editor: Carola Esposito CorcioneMaterials2021, 14(21), 6631; https://doi.org/10.3390/ma14216631Received: 17 September 2021 / Revised: 26 October 2021 / Accepted: 29 October 2021 / Published: 3 November 2021(This article belongs to the Special Issue Lightweight Structural Materials for Automotive and Aerospace) Abstract The automotive lightweighting trends, being

Read More

Figure 4 Six phase Induction Motor and Copper die casting Rotor

Design and performance analysis of novel multiphase induction motor with die-cast copper rotors using FEA for electric propulsion vehicles applications

Sathishkumar Kaliyavarathan, Sivakumaran T.S. Circuit World ISSN: 0305-6120 Article publication date: 6 April 2020  Issue publication date: 7 October 2020 Abstract Purpose The purpose of this paper is to study the development of novel multiphase induction motor (MPIM) with copper die cast rotor in the drive system of electric propulsion vehicles (EPV). It is estimated that the manufacturers are

Read More

Fig. 10. 18kW IM photograph for EV: (a) Rotor core sheet; (b) Cast copper rotor; (c) Photograph of the prototype IM.

A Cast Copper Rotor Induction Motor for Small Commercial EV Traction: Electromagnetic Design, Analysis, and Experimental Tests

Qian Zhang, Huijuan Liu, Member, IEEE, Zhenyang Zhang and Tengfei Song Abstract According to the demands of the small commercial electric vehicle (EV) traction driving system, an 18kW inverter-driven induction motor (IM) with a die-casting copper squirrel cage rotor for traction drive was designed and evaluated. The 2D finite element model of the designed IM

Read More

Fig. 8 Model of electromagnet sensor arrangement with rotor

Design and Development of Rotor Quality Test System for Die-Cast Copper Rotors

Soby T. Varghese; K. R. Rajagopal; Bhim Singh Abstract t is well known in the market that the copper rotor motor can give good efficiency at par with the new era motors, and can handle higher temperatures to qualify for electric vehicle application. Being a heavy metal, die-cast copper rotor manufacturing needs absolute care for faithful rotor

Read More