Tag Archives: Magnesium alloys

Design of Non-Heat Treatable High Pressure Die Casting Al Alloys: A Review

Design of Non-Heat Treatable High Pressure Die Casting Al Alloys: A Review

Hongyi Zhu, Cunjuan Xia, Huawei Zhang, Dechao Zhao, Mingliang Wang & Haowei Wang Abstract In recent years, Non-Heat Treatable High Pressure Die Casting Al alloys (NHT-HPDC Al alloys) have been proposed and developed for integrated die casting in the automotive industry. These alloys exhibit excellent castability and can achieve sufficient mechanical properties without the need for heat treatment. Despite their industrial

Read More

Gas inclusion cut open by drilling, on the threaded profile.

Modelling the Impregnation of a Pressure-Tight Casting

Abstract Pressure tightness is important for many die-cast aluminium castings, but the interconnected porosity formed in the aluminium alloy high-pressure die castings (HPDC) can form a network connecting several surfaces of the casting, especially as a result of machining after casting. The resulting potential leakage path can be imagined as a series of discontinuities varying in

Read More

Recent progress on cast magnesium alloy and components

Recent progress on cast magnesium alloy and components

Hecong Xie, Hua Zhao, Xin Guo, Yongfeng Li, Hengrui Hu, Jiangfeng Song, Bin Jiang & Fusheng Pan Abstract The application of cast magnesium alloy components is increasing in recent years, especially in the new energy automotive and transportation industries. As component application scenarios become increasingly complex, the performance of cast magnesium alloys needs to be further enhanced. Significant progress has been made in

Read More

Figure 3. Radio filter produced by means of the RSF/RheoMetalTM process. A unique feature of this product is the weight reduction of 1.6 kg facilitated by wall thicknesses as low as 0.4 mm at 40 mm height (aspect ratio 100). High conductivity low Si alloys were used, and thermal transport properties further increased by up to 20% depending on the alloy composition by means of heat treatments, as depicted in the top right diagram by means of arrows denoting the course of the latter (images provided by Comptech AB, Skillingaryd, Sweden).

Advances in Metal Casting Technology: A Review of State of the Art, Challenges and Trends—Part II: Technologies New and Revived

Open Access by Dirk Lehmhus Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Straße 12, 28359 Bremen, GermanyMetals 2024, 14(3), 334; https://doi.org/10.3390/met14030334Submission received: 25 February 2024 / Accepted: 8 March 2024 / Published: 14 March 2024(This article belongs to the Special Issue Advances in Metal Casting Technology) 1. Introduction The present text is the second part of an editorial written for a

Read More

Advances in Metal Casting Technology: A Review of State of the Art, Challenges and Trends—Part II: Technologies New and Revived

Advances in Metal Casting Technology: A Review of State of the Art, Challenges and Trends—Part II: Technologies New and Revived

by Dirk Lehmhus Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Straße 12, 28359 Bremen, GermanyMetals 2024, 14(3), 334; https://doi.org/10.3390/met14030334Submission received: 25 February 2024 / Accepted: 8 March 2024 / Published: 14 March 2024(This article belongs to the Special Issue Advances in Metal Casting Technology) 1. Introduction It is a platitude that science and technology do not necessarily evolve along straight paths.

Read More

Effect of Mold Temperature and Pouring Temperature on the Crack Behavior of Composite Water-Soluble Salt Cores

Effect of Mold Temperature and Pouring Temperature on the Crack Behavior of Composite Water-Soluble Salt Cores

Jingkai Zhang1, Yang Li1, Lai Song1, Weihua Liu1 & Xue Zou1 Abstract This study analyzes the effects of different pouring temperatures and mold temperatures on the crack behavior of NaCl–Na2SO4 composite water-soluble salt cores (WSSC). Firstly, calculate the solid fraction during the solidification process of the salt core using the Newton baseline method. Then predict the sensitivity of the salt core

Read More

Temperature dependence of mechanical strength in HPDC Mg–6Y–3Zn–1Al alloy with LPSO phase

Temperature dependence of mechanical strength in HPDC Mg–6Y–3Zn–1Al alloy with LPSO phase

Xin Yu a, Yafeng Li b, Yang Bai a, Wei Huang c, Bing Ye a, Xiangyang Kong d Abstract The temperature dependence of mechanical strength including yield strength (YS) and ultimate tensile strength (UTS) in HPDC WZA631 alloy is investigated in a wide temperature range from room temperature (RT) to 350 °C. It is found that at 25–300 °C, YS and UTS do not drop markedly, from 173 MPa and 274 MPa at RT to 113 MPa and 170 MPa at 300 °C, respectively. While

Read More

Fig. 2. TEM images of X (Mg12YZn(LPSO)) phase and W(Mg3Zn3Y2) phase in the Mg–5Zn–5Y-0.6Zr (wt%) alloy, (a) ZW55-I, (b) ZW55-II, (c) ZW55-III and (d) W(Mg3Zn3Y2) phase in ZW55-III [19].

Recent advances of high strength Mg-RE alloys: Alloy development, forming and application

Recent advances of high strength Mg-RE alloys: Alloy development, forming and application Author links open overlay panelYongfeng Li a, Ang Zhang a, Chuangming Li a, Hecong Xie a, Bin Jiang a, Zhihua Dong a, Peipeng Jin b, Fusheng Pan a https://doi.org/10.1016/j.jmrt.2023.08.055Get rights and content Abstract To further expand the application of magnesium (Mg) alloys, development of the high strength Mg-rare earth (RE) alloys is strongly desired. The strength of the Mg alloys can be greatly improved through adding RE elements.

Read More

Semi-solid Die Casting of Some Aluminum Alloys for Lightweight Automotive Components

Semi-solid Die Casting of Some Aluminum Alloys for Lightweight Automotive Components

Semi-solid Die Casting of Some Aluminum Alloys for Lightweight Automotive Components Part of the Lecture Notes in Mechanical Engineering book series (LNME) Abstract The use of light alloys in automotive applications has been rapidly increasing in the industry as a means to reduce fuel consumption and carbon dioxide emissions. Semi-solid forming process for Al-Si based alloys, which

Read More

Figure 1. High pressure die-casting [1].

An Industrial Perspective on Magnesium Alloy Wheels: A Process and Material Design

An Industrial Perspective on Magnesium Alloy Wheels: A Process and Material Design Miaomiao Wang1,21China Copper Institute of Engineering and Technology, Beijing, China.2Kunming Metallurgical Research Institute Co., Ltd. Beijing Branch, Beijing, China.DOI: 10.4236/msa.2023.141002PDFHTML XML18 Downloads   134 Views Abstract Light weights wheels improve vehicle performance with respect to road handling, cornering as well providing fuel economy and reduced greenhouse gas emissions. Aluminum

Read More