S. Cecchel, D. Ferrario The purpose of the present paper is to enhance and deepen the lightweight optimization in automotive, in particularfor commercial vehicles and buses. In detail, aim of this research is to develop a technically reliable and cost effectivesafety component for Light Commercial Vehicles (LCVs) in aluminum alloy. At this purpose, different solutions
G.CampatelliA.Scippa Abstract In High Pressure Die Casting (HPDC), geometrical distortions usually happen during the cooling phase, due to the reduced cooling time and the high thermal gradient inside the product itself. This phenomenon affects most the thin walled products. The usual die design practice considers only the linear shrinking of the product during the cooling as a consequence of
OksanaOzhoga-MaslovskajaElisabettaGariboldiJannis NicolasLemkeShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.matdes.2015.12.003Get rights and content Highlights • Critical conditions for blister formation of Al–9Si–3Cu–Fe alloy are identified via a FE model.• Blister formation is modeled for wide range of temperatures, pore pressure, shape, location, and size.• Strain field shows blister formation related to strain localization, depending of pore geometry.• Lamina-shaped discontinuities
XixiDongaHailinYangbXiangzhenZhuaShouxunJiaShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.jallcom.2018.09.260Get rights and content Abstract A high strength (Yield strength ≥ 320 MPa) and high ductility (Tensile elongation ≥ 10%) die–cast aluminium alloy was first developed. The AlSiCuMgMn alloy processed by high pressure die casting can provide the high yield strength of 321 MPa, the high ultimate tensile strength of 425 MPa and the high ductility of 11.3%, after solution treated at
D. T. PetersCopper Development Association Inc.Hilton Head Island, SCJ. G. CowieCopper Development Association Inc.New York, NYE. F. Brush, Jr.Copper Development Association Inc.Weston, MAS. P. MidsonCopper Development Association Inc.Denver, CO Abstract Little use has been made of pressure die casting for the manufacture of copper or copper alloy parts due in large part to poor economics
Gerry GangWangJ.P.WeilerMeridian Lightweight Technologies, Strathroy, Ontario N7G 4H6, Canada Abstract The use of magnesium alloy high pressure die cast (HPDC) components for structural applications, especially in the automotive and transportation industries, where weight reduction is of a great concern, is increasing. As new applications are developing and existing applications are becoming more complex, there is a need
진공도가 알루미늄 다이캐스팅의 다공성과 기계적 성질에 미치는 영향 Author links open overlay panelHanxueCaoabMengyaoHaoaChaoShenaPengLiangaShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.vacuum.2017.09.048Get rights and content Abstract AlSi9Cu3 alloy castings were produced by the vacuum-assisted high pressure die casting (HPDC) process under three different absolute pressures: 500 mbar, 200 mbar and 100 mbar. The influence of absolute pressure in the die cavity on the porosity, microstructure
Zheng Chen, Suo Fan, Lei Peng, Yincheng Wang, Xiaolong Gong, Xinwang Liu & Zitian Fan International Journal of Metalcasting (2022)Cite this article 67 Accesses Metricsdetails Abstract This paper presents a novel process for preparing high-strength water-soluble salt cores with complex structure via layered extrusion forming using K2SO4 and KCl as the base salt materials, which is suitable for manufacturing
Author links open overlay panelAndreasSchillingDanielSchmidtJakobGlückNiklasSchwenkeHusamSharabiMartinFehlbierShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.simpat.2022.102585Get rights and content Under a Creative Commons license Open access Abstract In this work, a simulations study on the impact on gravity cast salt cores was carried out for the different casting parameters in high pressure die casting as well as in rheocasting. To compare the simulation results, salt cores were
Xue-ting Wang, Wei-hua Liu, Xuan-yu Liu & Lai Song International Journal of Metalcasting (2022)Cite this article 84 Accesses 1 Citations Metricsdetails Abstract In this paper, the interfacial energy of various inorganic salts was calculated using the first principle. Finally, NaCl and Na2SO4 were determined as the core materials. A high-strength composite salt core was prepared by optimizing the distribution ratio