Tag Archives: High pressure die casting

First-Principles Calculation and Mechanical Properties of NaCl–Na2SO4 Composite Water-Soluble Salt Core

First-Principles Calculation and Mechanical Properties of NaCl–Na2SO4 Composite Water-Soluble Salt Core

Xue-ting Wang,  Wei-hua Liu,  Xuan-yu Liu &  Lai Song  International Journal of Metalcasting (2022)Cite this article 84 Accesses 1 Citations Metricsdetails Abstract In this paper, the interfacial energy of various inorganic salts was calculated using the first principle. Finally, NaCl and Na2SO4 were determined as the core materials. A high-strength composite salt core was prepared by optimizing the distribution ratio

Read More

Figure 4. Water-soluble experiments of the KNO3-based salt core strengthened by 30 wt.% glass fiber (size = 25 lm) in 80 C water: (a) 0 min; (b) 6 min; (c) 12 min; (d) 18 min

Effects of glass fiber size and content on microstructures and properties of KNO3-based water-soluble salt core for high pressure die casting

Xiaolong Gong, Wenming Jiang , Fuchu Liu, Zhiyuan Yang, Feng Guan, and Zitian FanState Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science andTechnology, Wuhan 430074, China Copyright 2020 American Foundry Societyhttps://doi.org/10.1007/s40962-020-00480-9 Abstract The water-soluble salt core with higher bending strength and toughness is necessary to withstand the high pressure

Read More

A predictive model for the evolution of the thermal conductance at the casting–die interfaces in high pressure die casting

A predictive model for the evolution of the thermal conductance at the casting–die interfaces in high pressure die casting

A.HamasaiidaG.DouraT.LouloucM.S.DarguschbaUniversité de Toulouse, INSA, UPS, Mines Albi, ISAE, ICA (Institut Clément Ader), CROMeP, Campus Jarlard, F-81013 Albi Cedex 09, FrancebCAST Cooperative Research Centre, School of Engineering, The University of Queensland, St. Lucia, Brisbane QLD 4072, AustraliacUniversité de Bretagne-Sud, LIMAT B, rue de Saint-Maudé, 56321 Lorient, France Abstract An analytical model is proposed to predict the

Read More

Macro Porosity Formation: A Study in High Pressure Die Casting

Macro Porosity Formation: A Study in High Pressure Die Casting

David Blondheim Jr. & Alex Monroe Abstract Porosity formation in high pressure die casting (HPDC) impacts mechanical properties and casting quality. Much is published regarding micro porosity and its impact on mechanical properties, but there is limited research on the actual formation of macro porosity. In production applications, macro porosity plays a critically important role in casting

Read More

Fig. 1 – Typical aluminum rotor and squirrel cage structure after dissolution of the iron laminations.

Use Of High Temperature Die Material & Hot Dies For High Pressure Die Casting Pure Copper & Copper Alloys

Abstract Little use has been made of pressure die casting for the manufacture of copper or copper alloy parts due in large part to poor economics resulting from short die life in casting these high melting metals. A research program initiated in 1997 was driven by the promise of a signifi cant increase in the

Read More

Fig. 1 - Cross beams: -1) HPDC aluminum, 2) LPDC and extruded aluminum, 3) LPDC and CFRP, 4) Extruded aluminum

Numerical and experimental analysis
of a high pressure die casting Aluminum
suspension cross beam
for light commercial vehicles

S. Cecchel, D. FerrarioThe purpose of the present paper is to enhance and deepen the lightweight optimization in automotive, in particular for commercial vehicles and buses. In detail, aim of this research is to develop a technically reliable and cost effective safety component for Light Commercial Vehicles (LCVs) in aluminum alloy. At this purpose, different

Read More

Fig. 3 Photographs of specimens at ambient temperature. (a) KCl–30 mol%NaCl. (b) K2CO3–50 mol% Na2CO3.

Strength of Salt Core Composed of Alkali Carbonate and Alkali Chloride Mixtures Made by Casting Technique

Jun Yaokawa, Daisuke Miura, Koichi Anzai, Youji Yamada, Hiroshi Yoshii Abstract The strength of four binary systems NaCl–Na2CO3, KCl–K2CO3, KCl–NaCl and K2CO3–Na2CO3 was investigated in order to develop expendable salt core for high pressure die casting processes. Four point bending test was conducted to determine the strength of specimens made from molten salts by using the permanent mold casting technique.

Read More

Mesh resolution consideration for the viability prediction of lost salt cores in the high pressure die casting process

Mesh resolution consideration for the viability prediction of lost salt cores in the high pressure die casting process

B. Fuchs and C. KörnerPublished Online:February 10, 2014pp 24-30 Abstract High pressure die casting is limited in its geometry since a lost core technology as with sand or low pressure casting is not state-of-the art. Using lost cores made from sodium chloride may be a solution for high pressure die casting. Due to the high dynamical forces

Read More

Figure 1. Photographs of ‘‘triplet’’ salt core and ‘‘triplet’’ die casting blank.

Study on the Composition and Properties of Salt Cores for Zinc Alloy Die Casting

Renhe Huang &aamp;  Baoping Zhang  International Journal of Metalcasting volume 11, pages440–447 (2017)Cite this article Metricsdetails Abstract Soluble salt cores have been successfully used for the die casting of aluminum and magnesium alloys. However, it has not been reported that the soluble salt cores were used for zinc alloy die casting. In this paper, a soluble salt core system

Read More

Properties Optimization and Strengthening Mechanism of KNO3–KCl Water-Soluble Composite Salt Core for Hollow Zinc Alloy Die Castings

Properties Optimization and Strengthening Mechanism of KNO3–KCl Water-Soluble Composite Salt Core for Hollow Zinc Alloy Die Castings

Xiaolong Gong,  Fuchu Liu,  Xinwang Liu,  Wenming Jiang &  Zitian Fan  International Journal of Metalcasting (2022)Cite this article Abstract A composite inorganic salt core with good water solubility and formability was proposed using potassium nitrate (KNO3) and potassium chloride (KCl) as base materials. The KNO3–KCl molar ratio has been optimized for the KNO3–KCl composite salt core, and

Read More