Minimizing the Casting Defects in High Pressure Die Casting Using Taguchi Analysis


1 Department of Mechanical Engineering, Wah Engineering College, University of Wah, Wah Cantt 47040, Pakistan

2 Department of Mechanical Engineering, Wah Engineering College, University of Wah, Wah Cantt 47040,Pakistan

3 Department of Mechanical Engineering, Capital University of Science and Technology, Islamabad 44000, Pakistan

4 Department of Mechanical Engineering, Air University Islamabad, Aerospace & Aviation Campus, Kamra 43570, Pakistan

AbstractHigh-Pressure Die Casting (HPDC) is one of the major production processes of automotive industry, widely used to manufacture geometrically complex nonferrous castings. The mechanical strength and microstructure of HPDC-manufactured products changes with variation in several process control parameters such as injection pressure, molten temperature, 1st and 2nd stage plunger velocity, cooling temperature, etc. Since these process parameters directly affect casting quality, their optimum combination is needed to maximize the productivity of process and minimize casting defects such as porosity, pinholes, blowholes, inclusions, etc. Hence, to tackle this problem, an approach is presented in this paper that minimizes the major casting defect, i.e., porosity, in the HPDC process by optimizing controlling parameters through Design of Experiments (DOE) in combination with a Taguchi Analysis. The results obtained showed that cooling time, injection pressure, and 2nd stage plunger velocity have a major influence on the response factor (density of the cast part). It was also concluded that, by using a 178 bar injection pressure, 665 °C molten temperature, 5 second cooling time, 210 °C mold temperature, 0.20 m·s−1 1st stage plunger velocity, and 6.0 m·s−1 2nd stage plunger velocity, the rejection rate of the selected part due to porosity was reduced by 61%.


고압 다이 캐스팅 (HPDC)은 기하학적으로 복잡한 비철 주조를 제조하는데 널리 사용되는 자동차 산업의 주요 생산 공정 중 하나입니다. HPDC 제조 제품의 기계적 강도 및 미세 구조는 사출 압력, 용융 온도, 1 단계 및 2 단계 플런저 속도, 냉각 온도 등과 같은 여러 공정 제어 매개 변수의 변화에 ​​따라 변경됩니다.

이러한 공정 매개 변수는 주조 품질에 직접적인 영향을 미치므로 최적의 조합 공정의 생산성을 극대화하고 다공성, 핀홀, 블로우 홀, 개재물 등과 같은 주조 결함을 최소화하기 위해 필요합니다.

따라서 이 문제를 해결하기 위해 본 논문에서는 주요 주조 결함, 즉 다공성을 최소화하는 접근법을 제시합니다. Taguchi 분석과 결합된 실험 설계 (DOE)를 통해 제어 매개 변수를 최적화하여 HPDC 프로세스. 얻은 결과는 냉각 시간, 사출 압력 및 2 단계 플런저 속도가 응답 계수 (주조 부품의 밀도)에 큰 영향을 미치는 것으로 나타났습니다.

또한 사출 압력 178bar, 용융 온도 665 ° C, 냉각 시간 5 초, 금형 온도 210 ° C, 1 단계 플런저 속도 0.20m · s-1, 2 단계 6.0m · s-1을 사용하여 결론을 내렸습니다. 스테이지 플런저 속도, 다공성으로 인한 선택된 부품의 거부율이 61 % 감소했습니다.


High pressure die casting, porosity, Design of Experiment, optimization, casting defects

Figure 1. Crank case specimen produced with the HPDC process.
Figure 1. Crank case specimen produced with the HPDC process.
Figure 2. Casting defects found in the crank case: (a) pinhole and (b) porosity.
Figure 2. Casting defects found in the crank case: (a) pinhole and (b) porosity.
Figure 3. Pareto chart of the defects.
Figure 3. Pareto chart of the defects.
Figure 4. Cause and Effect Diagram
Figure 4. Cause and Effect Diagram
Figure 5. Response graph of means against the selected input parameters.
Figure 5. Response graph of means against the selected input parameters.


  1. Teng, X., Mae, H., Bai, Y., and Wierzbicki, T., “Pore size and fracture ductility of aluminum low pressure die casting”, Eng. Fract. Mech., 76(8), pp. 983–996 (2009).
  2. Fracchia, E., Lombardo, S., and Rosso, M., “Case Study of a Functionally Graded Aluminum Part”, Appl. Sci., 8(7), p. 1113 (2018).
  3. Makhlouf, M. M., Apelian, D., and Wang, L., Microstructures and Properties of Aluminum Die Casting Alloys, USDOE Idaho Operations Office, Idaho Falls, ID (US); North American Die … (1998).
  4. Dargusch, M. S., Dour, G., Schauer, N., Dinnis, C. M., and Savage, G., “The influence of pressure during solidification of high pressure die cast aluminium telecommunications components”, J. Mater. Process. Technol., 180(1–3), pp. 37–43 (2006).
  5. Bonollo, F., Gramegna, N., and Timelli, G., “High-pressure die-casting: contradictions and challenges”, Jom, 67(5), pp. 901–908 (2015).
  6. Hamasaiid, A., Dargusch, M. S., Davidson, C., Tovar, S., Loulou, T., Rézaï-Aria, F., and Dour, G., “Effect of Mold Coating Materials and Thickness on Heat Transfer in Permanent Mold Casting of Aluminum Alloys”, Metall. Mater. Trans. A, 38, pp. 1303–1316 (2007).
  7. Adamane, A. R., Arnberg, L., Fiorese, E., Timelli, G., and Bonollo, F., “Influence of Injection Parameters on the Porosity and Tensile Properties of High-Pressure Die Cast Al-Si Alloys: A Review”, Int. J. Met., 9(1), pp. 43–53 (2015).
  8. Hidalgo, R., Esnaola, J., Larrañaga, M., Llavori, I., Herrero-Dorca, N., Hurtado, I., Otxoa, E., Rodríguez, P., and Kortabarria, A., “Influence of Surface Finish and Porosity on the Fatigue behaviour of A356 Aluminium Casting Alloy”, MATEC Web Conf., 165, p. 14007 (2018).
  9. Anilchandra, A. R., Arnberg, L., Bonollo, F., Fiorese, E., and Timelli, G., “Evaluating the Tensile Properties of Aluminum Foundry Alloys through Reference Castings—A Review”, Materials (Basel)., 10(9), p. 1011 (2017).
  10. YANG, H., yu, W., LI, X., and Xiong, S., “Effect of different processing parameters on interfacial heat-transfer behavior in high-pressure die-casting process”, Trans. Nonferrous Met. Soc. China, 28, pp. 2599–2606 (2018).
  11. Kong, L., She, F. H., Nahavandi, S., and Kouzani, A., Die Temperature Monitoring of High Pressure Die Casting (2000).
  12. Syrkos, G., “Die casting process optimization using Taguchi methods”, J. Mater. Process. Technol., 135, pp. 68–74 (2003).
  13. Ingle, V. and Sorte, M. B., “Defects, Root Causes in Casting Process and Their Remedies: Review”, Int. J. Eng. Res. Appl., 07, pp. 47–54 (2017).
  14. Zyska, A., Konopka, Z., Lagiewka, M., and Nadolski, M., “Porosity of Castings Produced by the Vacuum Assisted Pressure Die Casting Method”, Arch. Foundry Eng., 15 (2015).
  15. APPARAO, K. C. and BIRRU, A. K., “QFD-Taguchi based hybrid approach in die casting process optimization”, Trans. Nonferrous Met. Soc. China, 27(11), pp. 2345–2356 (2017).
  16. Wang, Y., Shiping, W., Lianjie, N., Xiang, X., Jianbing, Z., and Wenfeng, X., “Optimization of low-pressure die casting process parameters for reduction of shrinkage porosity in ZL205A alloy casting using Taguchi method”, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 228, pp. 1508–1514 (2014).
  17. Kwon, H.-J. and Kwon, H.-K., “Computer aided engineering (CAE) simulation for the design optimization of gate system on high pressure die casting (HPDC) process”, Robot. Comput. Integr. Manuf., 55, pp. 147–153 (2019).
  18. Yalçın, B., Koru, M., Ipek, O., and Özgür, A., “Effect of Injection Parameters and Vacuum on the Strength and Porosity Amount of Die-Casted A380 Alloy”, Int. J. Met., 11 (2016).
  19. Fiorese, E., Bonollo, F., and Battaglia, E., “A Tool for Predicting the Effect of the Plunger Motion Profile on the Static Properties of Aluminium High Pressure Die Cast Components”, Metals (Basel)., 8(10), p. 798 (2018).
  20. Cao, H., Wang, C., Che, J., Luo, Z., Wang, L., Xiao, L., Wang, J., and Hu, T., “Effect of Flow State of Pure Aluminum and A380 Alloy on Porosity of High Pressure Die Castings”, Materials (Basel)., 12(24), p. 4219 (2019).
  21. Iwata, Y., Dong, S., Sugiyama, Y., and Iwahori, H., “Effects of Solidification Behavior during Filling on Surface Defects of Aluminum Alloy Die Casting”, Mater. Trans., 54, pp. 1944–1950 (2013).
  22. Sadeghi, M. and Mahmoudi, J., “Experimental and Theoretical Studies on the Effect of Die Temperature on the Quality of the Products in High-Pressure Die-Casting Process”, Adv. Mater. Sci. Eng., 2012, p. 434605 (2012).
  23. Liu, C., Jiao, X., Nishat, H., Akhtar, S., Wiesner, S., and Xiong, S., “Characteristics of Fe-rich intermetallics compounds and their influence on the cracking behavior of a newly developed high-pressure die cast Al–4Mg–2Fe alloy”, J. Alloys Compd., 854, p. 157121 (2021).
  24. Jamkar, S. S., Deshmukh, M. J., and Vidhate, N. A., “Optimization of green sand casting process parameter by Taguchi method: a review”, Int. J. Mech. Eng., 4(1) (2014).
  25. Fajkiel, A., Dudek, P., Walczak, W., and Zawadzki, P., “Improvement of quality of a gravity die casting made from aluminum bronze be application of numerical simulation”, Arch. FOUNDRY Eng., 7, pp. 11–14 (2007).
  26. Świłło, s and Myszka, D., “A R C H I V E S of 39/3 Advanced metrology of surface defects measurement for aluminum die casting”, Arch. Foundry Eng., 11 (2011).
  27. Cica, D. and Kramar, D., “Intelligent Process Modeling and Optimization of Porosity Formation in High-Pressure Die Casting”, Int. J. Met., 12 (2018).
  28. Cao, H., Shen, C., Wang, C., Xu, H., and Zhu, J., “Direct Observation of Filling Process and Porosity Prediction in High Pressure Die Casting”, Mater. (Basel, Switzerland), 12(7), p. 1099 (2019).
  29. Aamir, M., Tu, S., Tolouei-Rad, M., Giasin, K., and Vafadar, A., “Optimization and Modeling of Process Parameters in Multi-Hole Simultaneous Drilling Using Taguchi Method and Fuzzy Logic Approach”, Materials (Basel)., 13(3), p. 680 (2020).
  30. Do, T.-V. and Hsu, Q.-C., “Optimization of Minimum Quantity Lubricant Conditions and Cutting Parameters in Hard Milling of AISI H13 Steel”, Appl. Sci., 6(3), p. 83 (2016).
  31. N., V., Nguyen, Q.-T., Tran, T.-H., Hong Ky, L., Anh Tuan, N., Tung, L., Nguyen, V.-T., and Hung, L., “Optimization of Grinding Parameters for Minimum Grinding Time When Grinding Tablet Punches by CBN Wheel on CNC Milling Machine”, Appl. Sci., 9, p. 957 (2019).
  32. Lan, T.-S., Chuang, K.-C., and Chen, Y.-M., “Optimization of machining parameters using fuzzy Taguchi method for reducing tool wear”, Appl. Sci., 8(7), p. 1011 (2018).
  33. Kolahan, F. and Azadi Moghaddam, M., “The Use of Taguchi Method with Grey Relational Analysis to optimize the EDM Process Parameters with Multiple Quality Characteristics”, Sci. Iran., 22(2), pp. 530–538 (2015).
  34. Azadi Moghaddam, M. and Kolahan, F., “Modeling and optimization of the electrical discharge machining process based on a combined artificial neural network and particle swarm optimization algorithm”, Sci. Iran., 27(3), pp. 1206–1217 (2020).
  35. Karthik, A., Karunanithi, R., Srinivasan, S. A., and Prashanth, M., “The optimization of squeeze casting process parameter for AA2219 alloy by using the Taguchi method”, Mater. Today Proc. (2019).
  36. Hassasi, S. A., Abbasi, M., and Hosseinipour, S. J., “Parametric Investigation of Squeeze Casting Process on the Microstructure Characteristics and Mechanical Properties of A390 Aluminum Alloy”, Int. J. Met., 14(1), pp. 69–83 (2020).
  37. Souissi, N., Souissi, S., Niniven, C., Amar, M., Bradai, C., and Elhalouani, F., “Optimization of Squeeze Casting Parameters for 2017 A Wrought Al Alloy Using Taguchi Method”, Metals (Basel)., 4(2), pp. 141–154 (2014).
  38. Prabhakar, A., Papanikolaou, M., Salonitis, K., and Jolly, M., “Minimising Defect Formation in Sand Casting of Sheet Lead: A DoE Approach”, Metals (Basel)., 10(2), p. 252 (2020).
  39. Mohsin, I., He, K., Li, Z., Zhang, F., and Du, R., “Optimization of the Polishing Efficiency and Torque by Using Taguchi Method and ANOVA in Robotic Polishing”, Appl. Sci., 10(3), p. 824 (2020).
  40. Balikai, V. G., Siddlingeshwar, I. G., and Gorwar, M., “Optimization of process parameters of High Pressure Die Casting process for ADC12 Aluminium alloy using Taguchi method”, Int. J. Pure Appl. Math., 120(6), pp. 959–969 (2018).
  41. Sarin, S., “Teaching Taguchi’’s Approach to Parameter Design”, 30 (1997).
  42. Wu, C. C. and Su, T. S., “Application of the Taguchi method for the optimization of visual inspection parameters for multi-layer ceramic capacitors”, Sci. Iran., 21(6), pp. 2379–2386 (2014).
  43. Chang, M. S., “Use of Taguchi method to develop a robust design for the magnesium alloy die casting process”, Mater. Sci. Eng. A, 379(1–2), pp. 366–371 (2004).
  44. Kamaruddin, S., Khan, Z., and Foong, S., “Application of Taguchi Method in the Optimization of Injection Moulding Parameters for Manufacturing Products from Plastic Blend”, Int. J. Web Eng. Technol., 2, pp. 574–580 (2010).
  45. Asim, M., Khan, M., Khan, L., and Umer, M., “An integrated approach of quality for polymer composite manufacturing validated and optimized through Taguchi method”, Sci. Iran., 24, pp. 1985–1995 (2017).
  46. Banik, K., “Effect of mold temperature on short and long-term mechanical properties of PBT”, Express Polym. Lett. - EXPRESS POLYM LETT, 2, pp. 111–117 (2008).