Abstract: This research paper investigates the die casting process for automobile oil pans using heat-resistant magnesium alloys, aiming to replace the currently used aluminum alloy. The study uses computational fluid dynamics (CFD) simulations and experimental die casting to evaluate the process parameters and material properties for optimal performance and defect reduction. The primary focus is
This blog post summarizes the research paper titled “Fatigue behavior of magnesium alloy and application in auto steering wheel frame,” published in Transactions of Nonferrous Metals Society of China in 2008. This paper investigates the low-cycle fatigue properties of die-cast magnesium alloys and their application in automotive steering wheel frames. 1. Overview: 2. Research Background:
1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology: 5. Major Research Findings: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright and Source Material: This summary is based on the paper “About the impact on gravity cast salt cores in high pressure die casting and rheocasting”
Rong-Yuan JouNational Formosa University, Huwei, Yunlin, TaiwanPaper No: ESDA2014-20373, V001T06A004; 9 pageshttps://doi.org/10.1115/ESDA2014-20373Published Online: October 23, 2014 In this study, the mold filling analyses of a thin-walled LED heat sink combined with the vacuum valve runner are simulated by FLOW-3D software. Two topics are analyzed and discussed. First, numerical simulations for variety of molding conditions, including effects of
Open Access by Dirk Lehmhus Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Straße 12, 28359 Bremen, GermanyMetals 2024, 14(3), 334; https://doi.org/10.3390/met14030334Submission received: 25 February 2024 / Accepted: 8 March 2024 / Published: 14 March 2024(This article belongs to the Special Issue Advances in Metal Casting Technology) 1. Introduction The present text is the second part of an editorial written for a
Author links open overlay panelAndreasSchillingDanielSchmidtJakobGlückNiklasSchwenkeHusamSharabiMartinFehlbierShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.simpat.2022.102585Get rights and content Under a Creative Commons license Open access Abstract In this work, a simulations study on the impact on gravity cast salt cores was carried out for the different casting parameters in high pressure die casting as well as in rheocasting. To compare the simulation results, salt cores were
B. Fuchs and C. KörnerPublished Online:February 10, 2014pp 24-30 Abstract High pressure die casting is limited in its geometry since a lost core technology as with sand or low pressure casting is not state-of-the art. Using lost cores made from sodium chloride may be a solution for high pressure die casting. Due to the high dynamical forces
by Sebastian Kohlstädt 1,2,Michael Vynnycky 1,3,* andStephan Goeke 41Division of Processes, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, 100 44 Stockholm, Sweden2Volkswagen AG—Division of Components Manufacturing, Dr. Rudolf-Leiding-Platz 1, 34225 Baunatal, Germany3Department of Mathematics and Statistics, University of Limerick, Limerick V94 T9PX, Ireland4Institute of Mechanics, Kassel University, Mönchebergstr. 7, 34125 Kassel, Germany*Author to whom
Sitao Chen1 and Feng Zhou1 Published under licence by IOP Publishing LtdJournal of Physics: Conference Series, Volume 2044, The 2nd International Conference on Advanced Materials and Intelligent Manufacturing (ICAMIM 2021) 20-22 August 2021, Nanning, ChinaCitation Sitao Chen and Feng Zhou 2021 J. Phys.: Conf. Ser. 2044 012144 Abstract According to the structural characteristics of the radiator, two different gate structures were designed. The