Open Access by Dirk Lehmhus Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Straße 12, 28359 Bremen, GermanyMetals 2024, 14(3), 334; https://doi.org/10.3390/met14030334Submission received: 25 February 2024 / Accepted: 8 March 2024 / Published: 14 March 2024(This article belongs to the Special Issue Advances in Metal Casting Technology) 1. Introduction The present text is the second part of an editorial written for a
Imran Zahid ab, M. Farhan a, M. Farooq a, M. Asim a, M. Imran c Abstract Electronic devices are being used extensively for different applications, where the thermal management of these devices is still a critical challenge due to rapid miniaturization, high heat flux and constantly rising temperature. Phase change materials (PCMs) based thermal management is adopted, but the low thermal conductivity limits their use in temperature-controlled electronic devices. Nano-enhanced phase change materials
Benjamin E. MacDonald1, Stuart Wiesner2, Ryan Holdsworth1, Carl Söderhjelm1 & Diran ApelianORCID:orcid.org/0000-0001-9743-606X1 Abstract The effects on phase equilibria of La and Fe additions to the Al–Ce–Ni-based alloy system are explored under high-pressure die casting conditions. The addition of La to Al–Ce–Ni-based alloy system only reacts with Ce synergistically to promote the formation of the Al11(Ce,La)3 intermetallic phase as predicted by CALculation
by Yashwanth Reddy Konda 1, Vamsi Krishna Ponnaganti 2, Peram Venkata Sivarami Reddy 3,R. Raja Singh 4, Paolo Mercorelli 5,*, Edison Gundabattini 6,* and Darius Gnanaraj Solomon 7 Abstract In recent times, there has been an increased demand for electric vehicles. In this context, the energy management of the electric motor, which are an important constituent of electric vehicles, plays a pivotal role. A
G.CampatelliA.Scippa Abstract In High Pressure Die Casting (HPDC), geometrical distortions usually happen during the cooling phase, due to the reduced cooling time and the high thermal gradient inside the product itself. This phenomenon affects most the thin walled products. The usual die design practice considers only the linear shrinking of the product during the cooling as a consequence of
Joshua Thomas JamesonBurda, Elizabeth A.Moorea, HeshamEzzatbRandolphKirchainaRichardRothaa Materials Systems Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Ave, E19-695, Cambridge, MA 02139, United Statesb WorldAuto Steel/American Iron and Steel Institute, 2000 Town Center, Suite 320, Southfield, MI 48075, United States Highlights Global demand for and adoption of battery electric vehicles is on the rise. To achieve increased
Sang-SooShina, Sang-KeeLeeb, Dae-KyeomKimc, BinLeecaR&D Center, Oh-Sung Tech Co. Ltd., Siheung, 15112, Republic of KoreabDepartment of Advanced Material Application, Daegu Campus of Korea Polytecnic, Daegu, 41765, Republic of KoreacKorea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon, 21999, Republic of Korea Abstract The cooling efficiency of aluminum die-casting molds is critical to prevent soldering,
Abstract Jie WeiCorporate Product Technology Unit, Fujitsu Limited , Kawasaki , Japan Cooling technologies that address high-density and asymmetric heat dissipation in CPU packages of high-performance servers are discussed. Thermal management schemes and the development of associated technologies are reviewed from a viewpoint of industrial application. Particular attention is directed to heat conduction in the