Category Archives: automotive-E

Figure1: Compressive stress and strain curves of wax and core material

Development of water soluble cores for investment casting – A review

This article introduces the paper “Development of water soluble cores for investment casting – A review” presented in INDIAN ENGINEERING EXPORTS 1. Overview: 2. Research Background: Investment Casting utilizes wax patterns for creating complex castings. Cores are essential for forming internal geometries like undercuts and channels within these castings. Traditionally, core removal post-casting involves methods

Read More

Fig. 1 Components of a air-conditioning compressor

Development of a Housing Component for an Auto-compressor Using Vacuum Ladling Die Casting

This article introduces the paper “Development of a Housing Component for an Auto-compressor Using Vacuum Ladling Die Casting” presented at the Transactions of Materials Processing. 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology: 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright:

Read More

FIGURE 1 Target components in a vehicle transmission which were chosen at Voit for defined manufacturing technologies (stamping and/or bending technology) (© Voit Automotive)

Cooperation of Development and Manufacturing for Up-to-date Transmission Parts

This article introduces the paper “Cooperation of Development and Manufacturing for Up-to-date Transmission Parts” presented at the ATZ 1. Overview: 2. Research Background: The automotive industry faces constant pressure to reduce development times. This necessitates a closer integration of construction and manufacturing processes within the die casting and forming industries. Historically, organizational structures have often

Read More

Fig. 2. Permanent mould casting machine for casting single pistons [8]

Casting of Combustion Engine Pistons Before and Now on the Example of FM Gorzyce

This article introduces the paper “[Casting of Combustion Engine Pistons Before and Now on the Example of FM Gorzyce]” 1. Overview: 2. Research Background: Social/Academic Context: Combustion engine pistons face increasingly stringent demands driven by the need for enhanced thermo-mechanical loads, reduced exhaust emissions, and improved fuel efficiency. The automotive industry’s push for lighter vehicles

Read More

Figure 3: Developed Mg oil pan and cooling lines.

A Study on Die Casting Process of the Automobile Oil Pan Using the Heat Resistant Magnesium Alloy

This article introduces the paper “A Study on Die Casting Process of the Automobile Oil Pan Using the Heat Resistant Magnesium Alloy”. Abstract: This research paper investigates the die casting process for automobile oil pans using heat-resistant magnesium alloys, aiming to replace the currently used aluminum alloy. The study uses computational fluid dynamics (CFD) simulations

Read More

Figure 3.5: SEM images on the fracture surface of HPDC processed primary alloy showing: (a) gas pores, and (b) shrinkage pore. (adapted from [79])

Influence of Die Temperature in High Pressure Die Casting of Thin-Walled Components

This article introduces the paper “Influence of Die Temperature in High Pressure Die Casting of Thin-Walled Components” by M. Wessén and L. Näslund: 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material

Read More

Figure 5. Flow characteristics at different velocities of injection: : (a1–a6) 1.0 m/s, (b1–b6) 1.5 m/s

Study on the Influence of Injection Velocity on Hole Defects in Die-Cast Aluminum Alloy

This article introduces the paper “Study on the Influence of Injection Velocity on the Evolution of Hole Defects in Die-Cast Aluminum Alloy” presented at the MDPI 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9.

Read More

Figure 1. Structure of the vacuum die-cast equipment

Study on Microstructures and Properties of Al. Alloy Vacuum Die-Cast Parts

This article introduces the paper “Study on Microstructures and Properties of the Al. Alloy Vacuum Die-Cast Parts of TL117 and C611” presented in the Journal of Physics: Conference Series. 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology: 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research:

Read More

Figure 13. The schematic diagrams of the ACSR Rheo-HPDC process (reprinted with permission from ref. [36], 2022, Elsevier).

Research Progress on Thermal Conductivity of High-Pressure Die-Cast Aluminum Alloys

This article introduces the paper “Research Progress on Thermal Conductivity of High-Pressure Die-Cast Aluminum Alloys” presented at the Metals, MDPI 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material is Yixian Liu

Read More

Figure 5. Results of constrained rod casting: (a) AA7075; (b) AA7068; (c) AA7055.

Development of Low-Pressure Die-Cast Al–Zn–Mg–Cu Alloy Propellers—Part I: Hot Tearing Simulations for Alloy Optimization

This article introduces the paper “Development of Low-Pressure Die-Cast Al–Zn–Mg–Cu Alloy Propellers—Part I: Hot Tearing Simulations for Alloy Optimization” presented in Materials Journal. 1. Overview: High-Strength Aluminum Alloy Propellers, Addressing Hot Tearing Issues Through Alloy Optimization Research 2. Research Background: Demand for High-Performance Leisure Boat Propellers, Hot Tearing Challenges in 7xxx Series Alloys 3. Research

Read More