Category Archives: Aluminium-E

Thermal hot spot prediction in high pressure die casting by determination of Chvorinovs rule shape constant

Thermal hot spot prediction in high pressure die casting by determination of Chvorinovs rule shape constant

Suraj Marathea Carmo QuadrosbaDepartment of Mechanical, Don Bosco College of Engineering, Fathorda, Madgoa Goa 403602, IndiabDepartment of Mechanical, Assam Don Bosco University, Tapesia Gardens, Kamarkuchi Sonapu, Assam 782402, India Available online 11 April 2021. Abstract This paper identifies the approximate height of thermal hot spots in casting components manufactured by high pressure die casting. Certain assumptions

Read More

Figure 15. R-HPDC automobile shock absorber part.

R-HPDC Process with Forced Convection Mixing Device for Automotive Part of A380 Aluminum Alloy

by Bing Zhou,Yonglin Kang *,Mingfan Qi,Huanhuan Zhang andGuoming ZhuSchool of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China*Author to whom correspondence should be addressed.Materials2014, 7(4), 3084-3105; https://doi.org/10.3390/ma7043084Received: 24 March 2014 / Revised: 4 April 2014 / Accepted: 4 April 2014 / Published: 15 April 2014(This article belongs to the Special Issue Light Alloys and Their Applications)

Read More

Fig. 1. a) Pin holes observed in the top side casting; b) Blow holes observed in tapped holes; c) Porosity is observed in top side of the casting.

Numerical and experimental approach to eliminate defects in al alloy pump- crank case processed through gravity die casting route

S.AravindP.RagupathiG.VigneshDepartment of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021, India Received 30 June 2020, Accepted 14 July 2020, Available online 14 August 2020. Abstract A numerical investigation was carried out with the help of computer based casting simulation software to eliminate defects such as shrinkage due to solidification, cracks, imperfect

Read More

Spatial point pattern methodology for the study of pores 3D patterning in two casting aluminium alloys

Spatial point pattern methodology for the study of pores 3D patterning in two casting aluminium alloys

DrissEl KhoukhiabcNicolasSaintierbFranckMorelaDanielBellettaPierreOsmondcViet-DucLeaaLAMPA, Arts et Métiers Institute of Technology, Angers, 49 035 Cedex, FrancebI2M, Arts et Métiers Institute of Technology, Talence, 33170 Cedex, FrancecGroupe PSA, Carrières-sous-Poissy, 78955 Cedex, France Received 18 November 2020, Revised 16 March 2021, Accepted 2 May 2021, Available online 4 May 2021. Highlights Point Process Theory is an efficient way to characterize

Read More

Figure 1. Sketches of selected specimens for microstructure observation.

Crack Initiation Mechanism in Casting AC4B Aluminum Alloy Parts with Complex Structure

by Daliang Yu 1,Wen Yang 2,Wanqing Deng 2,Songzhu Zhu 2,Qingwei Dai 1,3,* andDingfei Zhang 31School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China2Chongqing Zhicheng Machinery Co., LTD, Chongqing 400039, China3College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China*Author to whom correspondence should be addressed.Metals2021, 11(1), 97; https://doi.org/10.3390/met11010097Received: 27 November 2020 / Revised: 25 December 2020 / Accepted:

Read More

Fig. 1 Schematic diagram of a typical stir casting apparatus for the production of MMCs. Reproduced from Kok, M., 2005. Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. Journal of Materials Processing Technology 161, 381–387.

Casting Routes for Production of Metallic Based Composite Parts

R Palanivel, Shaqra University, Riyadh, Saudi ArabiaI Dinaharan, Tsinghua University, Beijing, ChinaRF Laubscher, University of Johannesburg, Johannesburg, South Africa 금속 기반 복합 부품 생산을 위한 주조 경로 Introduction A composite material is a material system consisting of a mixture or combination of two or more nano-micro- or macro-based elements with a separating interface where the

Read More

Casting defects and microstructure distribution characteristics of aluminum alloy cylinder head-gr1

Casting defects and microstructure distribution characteristics of aluminum alloy cylinder head with complex structure

YuanLia, JinxiangLiua, QiangZhangb, WeiqingHuangaa School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, Chinab Liaoshen Industries Group Co. Ltd, Shenyang 110045, China Abstract Due to the complex structure of the large cylinder head, it is prone to produce uncontrolled casting defects and uneven microstructure distribution. In order to predict the porosity defects and secondary dendrite arm

Read More

Fig. 2. Schematic of the sampling position of the connecting rod (A = microstructure observation and hardness test samples; B = tensile test sample).

Mechanical properties and microstructures of a modified Al–Si–Cu alloy prepared by thixoforming process for automotive connecting rods

SazianaSamat, Mohd Zaidi, OmarAmir Hossein Baghdadi, Intan Fadhlina Mohamed, Ahmad Muhammad AzizDepartment of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Malaysia Abstract The thixoforming process with feedstock preparation yields a fine microstructure and enhanced mechanical properties relative to other traditional casting processes. However, the thixoforming process

Read More

Figure 1. Schematic diagram of (a) the preparation of 4 wt%TiB2/Al-9Si-3Cu-0.8Zn composite; (b) HPDC mold; (c)HPDC casting.

Microstructures and mechanical properties of 4 wt%TiB2/Al-Si-Cu-Zn (T6) composite thin-walled shell housing fabricated by high pressure die casting

Shuaiying Xi1, Guodong Ma1, Lu Li1,2, Yuanbo Zhang1, Xiangyang Yu1, Yongkun Li3 and Rongfeng Zhou1,2 Published 24 March 2021 • © 2021 The Author(s). Published by IOP Publishing LtdMaterials Research Express, Volume 8, Number 3Citation Shuaiying Xi et al 2021 Mater. Res. Express 8 036514 Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to

Read More

Fig. 7. Cost and mass scaling for the motor subsystems to estimate motor costs for the AHSS and Al lightweight design.

Improvements in electric vehicle battery technology influence vehicle lightweighting and material substitution decisions

Joshua Thomas JamesonBurda, Elizabeth A.Moorea, HeshamEzzatbRandolphKirchainaRichardRothaa Materials Systems Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Ave, E19-695, Cambridge, MA 02139, United Statesb WorldAuto Steel/American Iron and Steel Institute, 2000 Town Center, Suite 320, Southfield, MI 48075, United States Highlights Global demand for and adoption of battery electric vehicles is on the rise. To achieve increased

Read More