Tag Archives: High pressure die casting (HPDC)

Figure 1: reduction of weight using structural aluminum high pressure die casting parts instead of joined steel parts [1]

Correlation between process parameters and quality characteristics in aluminum high pressure die casting

Beyond the Shot Curve: How New Sensors are Revolutionizing Aluminum High Pressure Die Casting Quality Control This technical summary is based on the academic paper “Correlation between process parameters and quality characteristics in aluminum high pressure die casting” by M. Winkler, L. Kallien, and T. Feyertag, presented at the 2015 NADCA Die Casting Congress &

Read More

Fig. 6. Comparison of weld joint macrostructure a) with cutting fluid; b) piston lubrication fluid; c) without contamination

Mass production welding of die-cast aluminium alloys by electron beam

Solving Weldability Issues in Die-Cast Aluminum: A Breakthrough in Electron Beam Welding for Mass Production This technical summary is based on the academic paper “Mass production welding of die-cast aluminium alloys by electron beam” by Daniel Drimal, Frantisek Kolenic, and Lubos Kovac, published in “E+E” (2018). It has been analyzed and summarized for technical experts

Read More

Figure 1. Schematic diagram of a typical HPDC process.

Development of High Performance Copper Alloy Chill Vent for High Pressure Die Casting

Boost HPDC Efficiency by 158%: The Power of High Performance Copper Alloy Chill Vents This technical summary is based on the academic paper “Development of High Performance Copper Alloy Chill Vent for High Pressure Die Casting” by Duoc T Phan, Syed H Masood, Syed H Riza, and Harsh Modi, published in the International Journal of

Read More

Fig. 4 - Porosity identify by a) X-ray on components from the first experimental activity, b) FEM simulations, c) X-ray on components from the final experimental activity (optimization of process parameters)

Redefining Automotive Safety: A 47% Lighter HPDC Aluminum Suspension Cross Beam

This technical summary is based on the academic paper “Numerical and experimental analysis of a high pressure die casting Aluminum suspension cross beam for light commercial vehicles” by S. Cecchel, D. Ferrario, published in La Metallurgia Italiana (2016). It has been analyzed and summarized for technical experts by CASTMAN with the assistance of AI. Keywords

Read More

Fig.1 – (a) The rotating furnace-sonication system; (b) Impeller with nitrogen degassing, (c) Shock tower.

How Rotary Degassing-Ultrasonic Methods Can Slash Porosity in HPDC Products

This technical summary is based on the academic paper “An investigation on effect of rotary degassing-ultrasonic method on high pressure die casting products” published in La Metallurgia Italiana (2022). It was analyzed and summarized for HPDC experts by CASTMAN experts with the help of LLM AI such as Gemini, ChatGPT, and Grok. Keywords Executive Summary

Read More

Figure 1. Schematic diagram of a typical HPDC process.

Development_of_High_Performance_Copper_Alloy_Chill_Vent_for_High_Pressure_Die_Casting

Boost Cooling Efficiency by 158%: The Power of Copper Alloy Chill Vents in HPDC This technical summary is based on the academic paper “Development of High Performance Copper Alloy Chill Vent for High Pressure Die Casting” published by Duoc T Phan, Syed H Masood, Syed H Riza, and Harsh Modi in International Journal of Mechanical

Read More

Figure 1.1: Gravity die mold [3].

Vertical vs. Horizontal Die Casting: Which Arrangement Maximizes Mechanical Properties?

This technical summary is based on the academic paper “ANALYSIS OF MECHANICAL PROPERTIES AND MICROSTRUCTURE OF MULTIPLE DIE CAVITY PRODUCTS PRODUCED IN VERTICAL AND HORIZONTAL ARRANGEMENT BY GRAVITY DIE CASTING” published by SALEH S SALEH ELFALLAH in Faculty of Mechanical and Manufacturing Engineering Universiti Tun Hussein Onn Malaysia (2012). It was analyzed and summarized for

Read More

Figure 0.2: (a) The geometrical dimensions and (b) the thickness distribution (mm) of the 2020 Ford explorer aluminium shock tower.

A cost-efficient process route for the mass production of thin-walled structural aluminum body castings

This article introduces the paper ‘A cost-efficient process route for the mass production of thin-walled structural aluminum body castings’ published by ‘RWTH Aachen University’. 1. Overview: 2. Abstracts or Introduction In response to the automotive sector’s demand for reduced vehicle weight to improve fuel efficiency and lower CO2 emissions, this thesis investigates a cost-efficient process

Read More

Figure 2.1: Porsche 911- rear Longitudinal rail (Magna BDW technologies Soest GmbH).

A cost-efficient process route for the mass production of thin-walled structural aluminum body castings

This introductory paper is the research content of the paper “A cost-efficient process route for the mass production of thin-walled structural aluminum body castings” published by Ergebnisse aus Forschung und Entwicklung. 1. Overview: 2. Abstract In order to meet the continuous demand for lower CO2 emissions, several approaches have been and still are extensively researched.

Read More

Fig. 1. Filling of differential cover with the molten metal coloured by speed with blue being slow and red being fast. The casting is shown in top view on the left and bottom view on the right. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Short shots and industrial case studies-Understanding fluid flow and solidification in high pressure die casting

Beyond the Simulation: What ‘Short Shots’ Reveal About Real-World HPDC Defects and Model Validation This technical brief is based on the academic paper “Short shots and industrial case studies: Understanding fluid flow and solidification in high pressure die casting” by Paul W. Cleary, Joseph Ha, Mahesh Prakash, and Thang Nguyen, published in Applied Mathematical Modelling

Read More