WRITTEN BY Helder Nunes, Omid Emadinia, Manuel F. Vieira and Ana Reis Submitted: December 5th, 2022 Reviewed: January 7th, 2023 Published: February 3rd, 2023 DOI: 10.5772/intechopen.109869 FROM THE EDITED VOLUME Recent Advancements in Aluminum Alloys [Working Title] Dr. Shashanka Rajendrachari CHAPTER METRICS OVERVIEW 13 Chapter DownloadsView Full Metrics REGISTER TO DOWNLOAD FOR FREE Share Cite ADVERTISEMENT ADVERTISEMENT Abstract Low-
Jessica Barabasch,Joyce Schmatz,Jop Klaver,Alexander Schwedt,and Janos L. Urai Abstract Constitutive laws to predict long-term deformation of solution-mined caverns and radioactive-waste repositories in rock salt play an important role in the energy transition. Much of this deformation is at differential stresses of a few megapascals, while the vast majority of laboratory measurements are at much higher differential
Influence of HPDC Process Parameters on the Microstructure of EC Electromotor Housing Marek Brůna 1, Martin Medňanský 1,*, Marek Matejka 1 and Radka Podprocká 2 1Department of Technological Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia 2Rosenberg-Slovakia s.r.o., Kováčska 38, 044 25 Medzev, Slovakia *Author to whom correspondence should be addressed. Metals 2023, 13(2), 295; https://doi.org/10.3390/met13020295 Received:
An Industrial Perspective on Magnesium Alloy Wheels: A Process and Material Design Miaomiao Wang1,21China Copper Institute of Engineering and Technology, Beijing, China.2Kunming Metallurgical Research Institute Co., Ltd. Beijing Branch, Beijing, China.DOI: 10.4236/msa.2023.141002PDFHTML XML18 Downloads 134 Views Abstract Light weights wheels improve vehicle performance with respect to road handling, cornering as well providing fuel economy and reduced greenhouse gas emissions. Aluminum
Steven Richard Pires de OliveiraDissertação de MestradoOrientador na FEUP: Prof. Doutor Rui Jorge de Lemos NetoOrientador no INEGI: Doutora Inês Vieira de Oliveira Abstract The high pressure die casting process has undergone major advances in recent years, due to its increasing use in the automotive sector. Although aluminum alloys are the most widely used, the
Abstract. Due to increasing environmental concerns, battery-powered electric vehicles (BEV) have gained popularity in the automotive for the past few years. An induction motor is an essential component of the propulsion system in integrated BEVs working on different operating conditions [1]. Since a rotor of the induction motor is configured with an electrical sheet, a
고압 다이캐스팅의 열처리 Metallurgical and Materials Transactions A volume 38, pages2564–2574 (2007)Cite this article Abstract High-pressure die-cast Al alloys cannot normally be heated at high temperatures due to the presence of pores containing entrapped gases, which lead to the formation of surface blisters. It has been found that blistering can be avoided by using considerably shorter solution-treatment times
XixiDongaHailinYangbXiangzhenZhuaShouxunJiaShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.jallcom.2018.09.260Get rights and content Abstract A high strength (Yield strength ≥ 320 MPa) and high ductility (Tensile elongation ≥ 10%) die–cast aluminium alloy was first developed. The AlSiCuMgMn alloy processed by high pressure die casting can provide the high yield strength of 321 MPa, the high ultimate tensile strength of 425 MPa and the high ductility of 11.3%, after solution treated at
진공도가 알루미늄 다이캐스팅의 다공성과 기계적 성질에 미치는 영향 Author links open overlay panelHanxueCaoabMengyaoHaoaChaoShenaPengLiangaShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.vacuum.2017.09.048Get rights and content Abstract AlSi9Cu3 alloy castings were produced by the vacuum-assisted high pressure die casting (HPDC) process under three different absolute pressures: 500 mbar, 200 mbar and 100 mbar. The influence of absolute pressure in the die cavity on the porosity, microstructure
HailinYangabShouxunJiaZhongyunFanaShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.matdes.2015.07.074Get rights and content Highlights • Solution and ageing significantly improve the tensile strength of die-cast Al–Si–Cu alloy. • Low Fe is necessary for improving the ductility in the solution and aged alloy. • Cu-rich phase is dissolved during solutionising of die-cast Al–Si–Cu alloy. • θ′ and Q′ precipitates co-exist in