– Core Objective of the Research: To provide a comprehensive overview of magnesium alloy melting and casting processes, examine the historical development, current status, and potential applications of structural magnesium castings, primarily focusing on the automotive industry, and discuss associated technological challenges. The increasing global demand for energy, environmental protection initiatives, and government regulations are expected
Abstract – Core Objective of the Research: To evaluate the advantages and disadvantages of currently available magnesium casting alloys for aerospace applications, and to develop improved alloys and casting techniques that offer enhanced high-temperature capability, improved corrosion resistance, and the ability to produce larger, more complex castings with weight savings. – Primary Methodology: The research involved a
Abstract Core Objective of the Research: To develop materials with enhanced characteristics compared to existing state-of-the-art materials for improved performance in aerospace systems and automobiles. For automobiles, this improvement is particularly crucial for powertrain applications rather than body structures. Main Methodologies: The research focuses on improving material properties through advancements in synthesis and processing techniques, rather than
– Core Research Objective: To develop a High Density Die Casting (HDDC) process to overcome the limitations of conventional die casting and extrusion methods for manufacturing high-performance heat sinks for electronic systems requiring efficient thermal management. – Methodology: Development and evaluation of an HDDC process utilizing high-thermal conductivity aluminum alloys. Fabrication of heat sinks with various fin
Title: Mold structure design and casting simulation of the high-pressure die casting for aluminum automotive clutch housing manufacturing Core Objective: To optimize the mold design and casting process for manufacturing aluminum automotive clutch housings using high-pressure die casting (HPDC), minimizing defects and ensuring high-quality products. Methodology: The study employed a multi-faceted approach combining 3D modeling, casting simulation, mold
Title: Automobile Parts Casting – Methods and Materials Used: A Review Core Objective of the Research: This review paper aims to comprehensively analyze the various casting methods and materials used in the automotive industry for manufacturing different parts. It examines the suitability of each method and material based on the specific requirements of the components, considering factors
by Andrea Sütőová 1,*, Róbert Kočiško 1,*, Patrik Petroušek 1, Martin Kotus 2, Ivan Petryshynets 3 and Andrii Pylypenko 4 Abstract The wear and degradation of tools applied in the high-pressure die casting of Al alloys induce significant financial losses. The formation of failures on the surface of mold parts caused by erosion, thermal fatigue, corrosion, and soldering negatively affects the surface quality
Abstract Ultra-large aluminum shape castings have been increasingly used in automotive vehicles, particularly in electric vehicles for light-weighting and vehicle manufacturing cost reduction. As most of them are structural components subject to both quasi-static, dynamic and cyclic loading, the quality and quantifiable performance of the ultra-large aluminum shape castings is critical to their success in
Abstract This research presents the design and implementation process of a remote monitoring system for temperature and force-induced pressure measurements in the mold cavity of high-pressure die casting (HPDC). A K-type thermocouple sensor was chosen to gauge the aggressive environment inside the mold cavity. An ejector pin was adapted for the installation of this sensor,
Jian Yang ab, Bo Liu ab, Yunbo Zeng c, Yiben Zhang ab, Haiyou Huang de, Jichao Hong bShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.engappai.2024.108514Get rights and content Abstract This research aims to provide a solution to the scarcity and fragmentation of industrial data on die casting aluminum alloys. Quantifying the coupling between die casting process-composition-properties of aluminum alloys through small datasets, is a critical step in predicting part properties and optimizing process selection. To