XixiDongaHailinYangbXiangzhenZhuaShouxunJiaShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.jallcom.2018.09.260Get rights and content Abstract A high strength (Yield strength ≥ 320 MPa) and high ductility (Tensile elongation ≥ 10%) die–cast aluminium alloy was first developed. The AlSiCuMgMn alloy processed by high pressure die casting can provide the high yield strength of 321 MPa, the high ultimate tensile strength of 425 MPa and the high ductility of 11.3%, after solution treated at
Xiaolong Gong, Wenming Jiang , Fuchu Liu, Zhiyuan Yang, Feng Guan, and Zitian FanState Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science andTechnology, Wuhan 430074, China Copyright 2020 American Foundry Societyhttps://doi.org/10.1007/s40962-020-00480-9 Abstract The water-soluble salt core with higher bending strength and toughness is necessary to withstand the high pressure
David Blondheim Jr. & Alex Monroe Abstract Porosity formation in high pressure die casting (HPDC) impacts mechanical properties and casting quality. Much is published regarding micro porosity and its impact on mechanical properties, but there is limited research on the actual formation of macro porosity. In production applications, macro porosity plays a critically important role in casting
Renhe Huang &aamp; Baoping Zhang International Journal of Metalcasting volume 11, pages440–447 (2017)Cite this article Metricsdetails Abstract Soluble salt cores have been successfully used for the die casting of aluminum and magnesium alloys. However, it has not been reported that the soluble salt cores were used for zinc alloy die casting. In this paper, a soluble salt core system
by Sebastian Kohlstädt 1,2,Michael Vynnycky 1,3,* andStephan Goeke 41Division of Processes, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, 100 44 Stockholm, Sweden2Volkswagen AG—Division of Components Manufacturing, Dr. Rudolf-Leiding-Platz 1, 34225 Baunatal, Germany3Department of Mathematics and Statistics, University of Limerick, Limerick V94 T9PX, Ireland4Institute of Mechanics, Kassel University, Mönchebergstr. 7, 34125 Kassel, Germany*Author to whom
Sebastian Kohlstädt* and Michael VynnyckyDepartment of Materials Science and Engineering,KTH Royal Institute of Technology,Brinellvägen 23,100 44 Stockholm, SwedenEmail: skoh@kth.seEmail: michaelv@kth.se*Corresponding author Abstract In this work, the implementation of three turbulence models inside the open source C++ computational fluid dynamics (CFD) library OpenFOAM were tested in 2D and 3D to determine the viability of salt cores
Xiaolong Gong, Wenming Jiang, Fuchu Liu, Zhiyuan Yang, Feng Guan & Zitian Fan International Journal of Metalcasting volume 15, pages520–529 (2021)Cite this article 187 Accesses 2 Citations Metrics Abstract The water-soluble salt core with higher bending strength and toughness is necessary to withstand the high pressure needed to manufacture some complex parts by high pressure die casting (HPDC). In this paper,
by Iban Vicario 1,*,Ignacio Crespo 2,†,Luis Maria Plaza 2,Patricia Caballero 1,† andIon Kepa Idoiaga 3,‡1Department of Foundry and Steel making, Tecnalia Research & Innovation, c/Geldo, Edif. 700, E-48160 Derio, Spain2Department of Aerospace, Tecnalia Research & Innovation, c/Mikeletegi 2, E-20009 Donostia, Spain3Industrias Lebario, c/Arbizolea 4, E-48213 Izurza, Spain*Author to whom correspondence should be addressed.†These authors contributed equally to this work.‡This author supervised this
Hyuk-JaeKwonaHong-KyuKwonbaDepartment of Civil Engineering, Cheongju University, Cheongju-city, Choongnam, South KoreabDepartment of Industrial & Management Engineering, Namseoul University, Cheonan-city, Choongnam, South Korea Abstract A most important progress in civilization was the introduction of mass production. HPDC molds are one of main technologies for mass production. Due to the high velocity of the liquid metal, aluminum die-casting
N. Rathinam ⇑, R. Dhinakaran, E. SharathDepartment of Mechanical Engineering, Pondicherry Engineering College, Pillaichavady, Puducherry, 605014, India Abstract Products manufactured from every manufacturing process exhibit some defects. To supply quality products to the customer these defects must be reduced. The motivation for this work is to reduce defects in end products reaching customers, thereby increasing