High Pressure Die Casting of Zamak Alloys

Steven Richard Pires de Oliveira
Dissertação de Mestrado
Orientador na FEUP: Prof. Doutor Rui Jorge de Lemos Neto
Orientador no INEGI: Doutora Inês Vieira de Oliveira


The high pressure die casting process has undergone major advances in recent years, due to its increasing use in the automotive sector. Although aluminum alloys are the most widely used, the use of zinc alloys has been increasing, mainly due to their excellent characteristics of surface quality and production cycles.

These characteristics make zinc alloys widely used in small applications, where surface quality and low cost are an indispensable requirement. In this study, more attention will be given to the high pressure die casting of zinc alloys, more precisely the Zamak alloys. During the injection process, a turbulent molten metal flow is generated, as a result of the high injection velocities. For this reason, large amounts of air porosity are produced during the injection process.

This causes the air to become trapped in the parts, which deteriorates the mechanical properties. Heat treatments cannot be applied to components with air porosity, since they will expand and cause blistering. An optimized gating system is a solution to minimize the occurrence of these defects. A major concern, is that this process is not valued enough, because many times only the designers experience is used for the dessign process of a gating system.

For these reasons, a good practice manual for designing a gating systems is presented and then applied in a real case, where the lack of an otimized gating system results in production rejection rate of more than 40 %. This solution is later validated using a die casting simulator, ProCAST, where the occurrence of defects will be analyzed. It has been found that an optimized gating system resulted in a more uniform filling pattern, which resulted in less air entrapments.

Even with an optimized gating system, it is not always possible to completely reduce air entrapments during the filling process. The application of vacuum in the cavity arises from the need to reduce/minimize this problem. This technology is widely applied in aluminum and magnesium alloys. However, in zinc alloys it is not common practice.

This is due to the fact that the zinc alloy market is not very demanding in terms of mechanical properties and is reserved for parts with a lower added value. However, it may be necessary to use vacuum in cases where an optimized system is not sufficient. A designing vacuum system method is proposed, where it is applied in a real case. This design is based on the use of the Esco Engineering App, which is a tool that calculates a number of parameters of the vacuum system. This program also enables the validation of the design based on the desired vacuum efficiency.

고압 다이캐스팅 공정은 자동차 부문에서의 사용 증가로 인해 최근 몇 년 동안 큰 발전을 이루었습니다. 알루미늄 합금이 가장 널리 사용되지만 아연 합금은 표면 품질 및 생산 주기 특성이 우수하기 때문에 그 사용이 증가하고 있습니다. 이러한 특성으로 인해 아연 합금은 표면 품질과 저렴한 비용이 필수 요건인 소규모 응용 분야에 널리 사용됩니다.

본 연구에서는 아연 합금, 보다 정확하게는 Zamak 합금의 고압 다이캐스팅에 더 많은 관심을 기울일 것입니다. 사출 공정 중에 높은 사출 속도로 인해 난류 용융 금속 흐름이 생성됩니다. 이러한 이유로 사출 공정 중에 많은 양의 기공이 생성됩니다. 이로 인해 공기가 부품에 갇히게 되어 기계적 특성이 저하됩니다. 공기 다공성이 있는 구성 요소에는 열 처리를 적용할 수 없습니다. 팽창하여 기포가 발생하기 때문입니다. 최적화된 게이팅 시스템은 이러한 결함 발생을 최소화하기 위한 솔루션입니다.

주요 관심사는 게이팅 시스템의 설계 프로세스에 설계자 경험만 사용되는 경우가 많기 때문에 이 프로세스의 가치가 충분하지 않다는 것입니다. 이러한 이유로 게이팅 시스템 설계를 위한 모범 사례 매뉴얼을 제시하고 최적화된 게이팅 시스템이 부족하여 40% 이상의 생산 거부율이 발생하는 실제 사례에 적용합니다.

이 솔루션은 나중에 다이캐스팅 시뮬레이터인 ProCAST를 사용하여 검증되며 결함 발생이 분석됩니다. 최적화된 게이팅 시스템은 보다 균일한 충전 패턴을 제공하여 공기 포획을 줄인다는 사실이 밝혀졌습니다. 최적화된 게이팅 시스템을 사용하더라도 충진 공정 중 공기 포집을 완전히 줄이는 것이 항상 가능한 것은 아닙니다. 캐비티에 진공을 적용하는 것은 이 문제를 줄이거나 최소화할 필요가 있기 때문입니다.

이 기술은 알루미늄 및 마그네슘 합금에 널리 적용됩니다. 그러나 아연 합금에서는 일반적이지 않습니다. 이는 아연 합금 시장이 기계적 특성 측면에서 그다지 까다롭지 않고 부가가치가 낮은 부품에 국한되어 있기 때문입니다. 그러나 최적화된 시스템이 충분하지 않은 경우 진공을 사용해야 할 수도 있습니다. 실제 사례에 적용되는 설계 진공 시스템 방법을 제안합니다.

이 설계는 진공 시스템의 여러 매개변수를 계산하는 도구인 Esco Engineering 앱의 사용을 기반으로 합니다. 이 프로그램은 또한 원하는 진공 효율성을 기반으로 설계를 검증할 수 있습니다.


High pressure die casting; Zamak alloys; Gating system; ProCAST; SolidWorks; Vacuum;
Exco Engineering

Figure 9- Left: Schematics of a conventional HPDC cold chamber machine [14]; Right: Typical layout of a component produced by a cold chamber machine [15].
Figure 9- Left: Schematics of a conventional HPDC cold chamber machine [14]; Right: Typical layout of a component produced by a cold chamber machine [15].


  1. Butler, W. A., Timelli, G., Battaglia, E., & Bonollo, F. (2016). Die Casting (Permanent
  2. Bonollo, F., Gramegna, N., & Timelli, G. (2015). High-Pressure Die-Casting:
    Contradictions and Challenges. JOM, 67(5), 901-908. doi:10.1007/s11837-015-1333-8.
  3. Andresen, B. (2005). Die casting engineering a hydraulic, thermal, and mechanical
    process. New York: Marcel Dekker.
  4. Vinarcik, E. J. (2002). High Integrity Die Casting Processes: Wiley.
  5. Murray, M., & Murray, M. (2011). High pressure die casting of aluminium and its alloys
    Fundamentals of Aluminium Metallurgy (pp. 217-261): Elsevier.
  6. Kwon, H.-J., & Kwon, H.-K. (2018). Computer aided engineering (CAE) simulation for
    the design optimization of gate system on high pressure die casting (HPDC) process.
    Robotics and Computer-Integrated Manufacturing.
  7. Larsen, D., & Colvin, G. (1999). Vacuum-Die casting titanium for aerospace and
    commercial components. JOM, 51(6), 26-27. doi:10.1007/s11837-999-0089-4.
  8. Singh, R. (2014). Modeling of surface hardness in hot chamber die casting using
    Buckingham’s π approach. Journal of Mechanical Science and Technology, 28(2), 699-
  9. doi:10.1007/s12206-013-1133-4.
  10. Peti, F., & Grama, L. (2011). Analyze of the possible causes of porosity type deffects
    in aluminium high pressure diecast parts. Scientific Bulletin of the" Petru Maior"
    University of Targu Mures, 8(1), 41.
  11. Becker, M., Kallien, L., & Weidler, T. (2015). Production of magnesium die castings
    with hollow structures using gas injection technology in the hot chamber die casting
  12. Wang, L., Turnley, P., & Savage, G. (2011). Gas content in high pressure die castings.
    Journal of Materials Processing Technology, 211(9), 1510-1515.
  13. Rzychoń, T., Adamczk-Cieślak, B., Kiełbus, A., & Mizera, J. (2012). The influence of
    hot-chamber die casting parameters on the microstructure and mechanical properties of
    magnesium-aluminum alloys containing alkaline elements
    Einfluss der Ofenparameter beim Druckgießen auf die Mikrostruktur und mechanischen
    Eigenschaften von Magnesium-Aluminium Legierungen mit alkalischen Elementen.
    Materialwissenschaft und Werkstofftechnik, 43(5), 421-426.
  14. Sharma, S. (2014). Modeling and Optimization of Die Casting Process for ZAMAK
    Alloy. Journal of Engineering and Technology, 4(2), 87-94. doi:10.4103/0976-
  15. Luo, A. A. (2013). Magnesium casting technology for structural applications. Journal
    of Magnesium and Alloys, 1(1), 2-22.
  16. North American Die Casting Association, A. H., Illinois. (2007). NADCA- Introduction
    to Die Casting.
  17. Gariboldi, E., Bonollo, F., & Parona, P. (2010). Handbook of Defects in HPDC. AIM,
  18. Walkington, W. G. (2003). Gas Porosity: A Guide to Correcting the Problems: North
    American Die Casting Association.
  19. Walkington, W. G. (1997). Die casting defects.*. Troubleshooting guide: NADCA.
  21. Midson, D. S. (2017 ). NADCA EC-515 Die Casting Defects Course Review: Hill and
    Griffith Company.
  22. Fiorese, E., Bonollo, F., Timelli, G., Arnberg, L., & Gariboldi, E. (2015). New
    classification of defects and imperfections for aluminum alloy castings. International
    Journal of Metalcasting, 9(1), 55-66.
  23. Höök, T. Tampere University of Technology, HPDC
    runner and gating system design, CAE Mould Design.
  24. Data, A. (2003). NADCA product specification standards for die castings. Arlington
    Heights, NADCA.
  25. Ward, M. (2006). Gating manual: NADCA.
  26. Comparison of processes. Casting versatility leads to further savings. Retrieved from
  27. Rosindale, I., & Davey, K. (1998). Steady state thermal model for the hot chamber
    injection system in the pressure die casting process. Journal of Materials Processing
    Technology, 82(1-3), 27-45.
  28. Winter, R. (2011). EZACTM–High Strength, Creep Resistant, Zinc Die Casting Alloy.
  29. Kumar Das, S., & Kumar Bhattacharya, D. (2003). Corrosion failure of Zn–Al detonator
    housing. Engineering Failure Analysis, 10(6), 639-643.
  30. Pola, A., Roberti, R., & Montesano, L. (2010). New Zinc alloys for semisolid
    applications. International Journal of Material Forming, 3(1), 743-746.
  31. Dynacast. Retrieved from https://www.dynacast.co.uk/
  32. da Costa, E. M., da Costa, C. E., Dalla Vecchia, F., Rick, C., Scherer, M., dos Santos,
    C. A., & Dedavid, B. A. (2009). Study of the influence of copper and magnesium
    additions on the microstructure formation of Zn–Al hypoeutectic alloys. Journal of
    Alloys and Compounds, 488(1), 89-99.
  33. Reveko, V., & Møller, P. (2018). Special Aspects of Electrodeposition on Zinc Die
    Castings (Vol. 82).
  34. Stefanescu, D., Davis, J., & Destefani, J. (1988). Metals Handbook, Vol. 15--Casting.
    ASM International, 1988, 937.
  35. Wanhill, R., & Hattenberg, T. (2005). Corrosion-induced cracking of model train zincaluminium die castings.
  36. Zaid, A. I., & Mostafa, A. O. (2017). Effect of hafnium addition on wear resistance of
    zinc-aluminum 5 alloy: A three-dimensional presentation. Advanced Materials Letters,
    8(9), 910-915. doi:10.5185/amlett.2017.1662.
  37. Goodwin, F. E., Zhang, K., Filc, A. B., Holland, R. L., Dalter, W. R., & Jennings, T. M.
    (2007). Development of zinc die casting alloys with improved fluidity: progress in thin
    section zinc die casting technology. Paper presented at the Proc. NADCA Metalcasting
    Congress, Houston Google Scholar.
  38. Goodwin, F., Kallien, L., & Leis, W. The High Fluidity (HF) Zinc Alloy: ProcessProperty and Ageing Characteristics.
  39. Goodwin, F., Leis, W., & Kallien, L. (2011). Ageing Properties of Zinc Alloys. Paper
    presented at the NADCA 2011 Congress, Columbus, OH.
  40. Kim, C.-H., & Kwon, T. H. (2001). A runner–gate design system for die casting.
  41. Hansson, P. (2009). Modern Prehardened Tool Steels in Die-Casting Applications.
    Materials and Manufacturing Processes, 24(7-8), 824-827.
    Engineering Research & Technology (IJERT), 3(4).
  43. Pinto, H., & Silva, F. (2017). Optimisation of die casting process in Zamak alloys.
    Procedia Manufacturing, 11, 517-525.
  44. Yangqing, D., Kun, B., Yangliu, D., & Yiwei, D. (2010). Reversing design
    methodology of investment casting die profile based on ProCAST. Research &
  45. Dadić, Z., Živković, D., Čatipović, N., & Bilić, J. (2017). High pressure die casting
    mould repair technologies. Paper presented at the 7th International Conference"
    Mechanical Technologies and Structural Materials 2017".
  46. Huang, R., & Zhang, B. (2017). Study on the composition and properties of salt cores
    for zinc alloy die casting. International Journal of Metalcasting, 11(3), 440-447.
  47. Adámková, E., Jelínek, P., Beňo, J., & Mikšovský, F. (2015). Water-soluble cores–
    verifying development trends. Materiali In Tehnologije, 49(1), 61-67. Retrieved from
  48. Kallien, L., Bőhnlein, C., Dworak, A., & Műller, B. (2013). Ergebnisse aus dem
    Forschungsprojekt 3-D-Freiform–medienführende Kanäle im Druckguss. Giesserei
    Praxis, 100(12), 36-43.
  49. Jelínek, P., Adámková, E., Mikšovský, F., & Beňo, J. (2015). Advances in technology
    of soluble cores for die castings. Archives of foundry engineering, 15(2), 29-34.
  50. Jelínek, P., & Adámková, E. (2014). Lost cores for high-pressure die casting. Archives
    of foundry engineering, 14(2), 101-104.
  51. Tu, S., Liu, F., Li, G., Jiang, W., Liu, X., & Fan, Z. (2018). Fabrication and
    characterization of high-strength water-soluble composite salt core for zinc alloy die
    castings. The international journal of advanced manufacturing technology, 95(1-4),
  52. Gramegna, N. (2006). Analysis of the factors contributing to the heat balance of an high
    pressure die-casting mould. EnginSoft SpA, Padova.
  53. Fiorese, E., Bonollo, F., Battaglia, E., & Cavaliere, G. (2017). Improving die casting
    processes through optimization of lubrication. International Journal of Cast Metals
    Research, 30(1), 6-12. doi:10.1080/13640461.2016.1162387.
  54. Asthana, S. (2013). Innovative die lubricant trends for evolving productivity and
    process requirements. NADCA Die casting Cong.
  55. Andreoni, L., Casè, M., & Pomesano, G. Lubrificazione della cavità dello stampo,
    quaderni della colata a pressione delle leghe di alluminio, quaderno Nr. 7, 1^ edizione,
  56. Brescia, Edimet.
    (2004). Profitabler Spritzgiessen mit Stickstoff oder Wasser? Kunststoffe, 94(9), 203-
  58. KALLIEN, L. H., WEIDLER, T., HERMANN, C., & STIELER, S. U. (2006).
    Druckgussteile mit funktionalen Hohlräumen durch Gasinjektion. Giesserei, 93(11).
  59. Kallien, L. H. (2009). Using gas injection in high pressure die casting technology. Paper
    presented at the 113th Metalcasting Congress, Las Vegas, Nevada.
  60. Kallien, L. H., Weidler, T., Hermann, C., Stieler, U., Kallien, L., Weidler, T., . . .
    Kunststoff, S. (2006). Pressure die castings with functional cavities produced by gas
    injection. Giessereiforschung, 58(4), 2-9.
  61. Kim, E., Lee, K., & Moon, Y. (2000). A feasibility study of the partial squeeze and
    vacuum die casting process. Journal of Materials Processing Technology, 105(1-2), 42-
  62. Thirugnanam, M. (2013). Modern high pressure die-casting processes for aluminium
    castings. Paper presented at the Transaction of Indian Foundry Congress.
  63. De Cicco, M. P., Li, X., & Turng, L.-S. (2009). Semi-solid casting (SSC) of zinc alloy
    nanocomposites. Journal of Materials Processing Technology, 209(18-19), 5881-5885.
  64. Lee, J. K., Kim, S. K., & Lee, Y. C. (2008). Development of Novel Hot Chamber RheoDiecasting Process. Solid State Phenomena, 141-143, 191-194.
  65. Lumley, R., O’Donnell, R., Gunasegaram, D., & Givord, M. (2007). Heat treatment of
    high-pressure die castings. Metallurgical and Materials Transactions A, 38(10), 2564-
  66. Kasprzak, W., Sokolowski, J., Yamagata, H., Aniolek, M., & Kurita, H. (2011). Energy
    efficient heat treatment for linerless hypereutectic Al-Si engine blocks made using
    vacuum HPDC process. Journal of Materials Engineering and Performance, 20(1),
  67. Changhua (Joshua) Huang, W. B. (2014). Venting Design and Process Optimization of
    Die Casting Process for Structural components - Part II Venting Design and Process
    Optimizationn. Paper presented at the Die casting Congress & Tabletop.
  68. Lumley, R. (2011). Progress on the heat treatment of high pressure die castings
    Fundamentals of aluminium metallurgy (pp. 262-303): Elsevier.
  69. ZHANG, S., WEI, X., YU, W., LIAN, Z., & ZHAO, H. (2015). Microstructural
    Characterization of Zinc Alloy ZA27 with Modification and Heat Treatments.
  70. Kallien, L. H., & Leis, W. (2011). Ageing of Zink Alloys. Giessereiforschung including
    CD ROM, 63(1), 2.
  71. Babić, M., Ninković, R., Mitrović, S., & Bobić, I. (2007). Influence of heat treatment
    on tribological behavior of Zn-Al Alloys. Paper presented at the Proceedings of 10th
    International Conference on Tribology, SERBIATRIB.
  72. Bobic, B., Bajat, J., Acimovic-Pavlovic, Z., Rakin, M., & Bobic, I. (2011). The effect
    of T4 heat treatment on the microstructure and corrosion behaviour of Zn27Al1. 5Cu0.
    02Mg alloy. Corrosion Science, 53(1), 409-417.
  73. Liu, Y., Li, H.-y., Jiang, H.-f., & Lu, X.-c. (2013). Effects of heat treatment on
    microstructure and mechanical properties of ZA27 alloy. Transactions of Nonferrous
    Metals Society of China, 23(3), 642-649. doi:https://doi.org/10.1016/S1003-
  74. Choudhury, P., Das, K., & Das, S. (2005). Evolution of as-cast and heat-treated
    microstructure of a commercial bearing alloy. Materials Science and Engineering: A,
    398(1), 332-343. doi:https://doi.org/10.1016/j.msea.2005.03.098.
  75. Michalik, R., & Tomaszewska, A. (2014). Influence of Heat Treatment on the Hardness
    of ZnAl22Cu3 Alloy. Solid State Phenomena, 212, 35-38.
  76. Prasad, B. K., Patwardhan, A. K., & Yegneswaran, A. H. (1996). Influence of heat
    treatment parameters on the microstructure and properties of some zinc-based alloys.
    Journal of Materials Science, 31(23), 6317-6324. doi:10.1007/bf00354455.
  77. Kumar, V., & Madan, J. (2017). A system for computer-aided gating design for multicavity die-casting dies. Proceedings of the Institution of Mechanical Engineers, Part B:
    Journal of Engineering Manufacture, 231(11), 1983-1999.
  78. Renukananda, K. H., & Ravi, B. (2016). Multi-Gate Systems in Casting Process:
    Comparative Study of Liquid Metal and Water Flow. Materials and Manufacturing
    Processes, 31(8), 1091-1101. doi:10.1080/10426914.2015.1037911.
  79. Wu, S., Lee, K., & Fuh, J. (2002). Feature-based parametric design of a gating system
    for a die-casting die. The international journal of advanced manufacturing technology,
    19(11), 821-829.
  80. Uchida, M. (2009). Development of vacuum die-casting process. China Foundry, 6(2),
  81. . Retrieved from https://www.fondarex.com/
  82. Zyska, A., Konopka, Z., Łągiewka, M., & Nadolski, M. (2015). Porosity of Castings
    Produced by the Vacuum Assisted Pressure Die Casting Method. Archives of foundry
    engineering, 15(1), 125-130.
  83. NOURI, B. A. (2004). Analysis of vacuum venting in Die Casting.
  84. HU, B., XIONG, S., Murakami, M., Matsumoto, Y., & Ikeda, S. Study on vacuum die
    casting process of aluminum alloys.
  85. Wang, X., Zhu, S., Easton, M. A., Gibson, M. A., & Savage, G. (2014). Heat treatment
    of vacuum high pressure die cast magnesium alloy AZ91. International Journal of Cast
    Metals Research, 27(3), 161-166.
  86. Niu, X., Hu, B., Pinwill, I., & Li, H. (2000). Vacuum assisted high pressure die casting
    of aluminium alloys. Journal of Materials Processing Technology, 105(1-2), 119-127.
  87. Cao, H., Hao, M., Shen, C., & Liang, P. (2017). The influence of different vacuum
    degree on the porosity and mechanical properties of aluminum die casting. Vacuum,
    146, 278-281.
  88. Li, S.-y., Li, D.-j., Zeng, X.-q., & Ding, W.-j. (2014). Microstructure and mechanical
    properties of Mg–6Gd–3Y–0.5 Zr alloy processed by high-vacuum die-casting.
    Transactions of Nonferrous Metals Society of China, 24(12), 3769-3776.
  89. Li, X.-b., Xiong, S., & Guo, Z.-p. (2016). Improved mechanical properties in vacuumassist high-pressure die casting of AZ91D alloy. Journal of Materials Processing
    Technology, 231, 1-7.
  90. Siederslebnen, M. (2003). Vacuum Die‐Casting of Magnesium Parts with High
    Pressure. Magnesium-Alloys and Technology, 45-55.
  91. Hu, B., Xiong, S., Masayuki, M., Yoshihide, M., & Shingo, I. (2006). Experimental
    study of vacuum die casting process of AZ91D magnesium alloy. Magnesium
    Technology 2006, 51-55.
  92. Bar-Meir, G., Eckert, E., & Goldstein, R. (1996). Pressure die casting: A model of
    vacuum pumping. Journal of Manufacturing Science and Engineering, 118(2), 259-265.
  93. Jin, C. K., Jang, C. H., & Kang, C. G. (2015). Vacuum die casting process and
    simulation for manufacturing 0.8 mm-thick aluminum plate with four maze shapes.
    Metals, 5(1), 192-205.
  94. Yoon, J., Kim, S., Yim, Y., & Park, J. (2008). Numerical simulation of molten metal
    flow under vacuum condition in high pressure and low pressure die casting process.
    International Journal of Cast Metals Research, 21(1-4), 299-303.
  95. Wang, L. (2007). Mathematical modelling of air evacuation in die casting process via
    CASTvac and other venting devices. International Journal of Cast Metals Research,
    20(4), 191-197.
  96. Wang, Q.-l., & Xiong, S.-m. (2015). Effect of multi-step slow shot speed on
    microstructure of vacuum die cast AZ91D magnesium alloy. Transactions of
    Nonferrous Metals Society of China, 25(2), 375-380.
  97. Otarawanna, S., Gourlay, C. M., Laukli, H. I., & Dahle, A. K. (2009). Microstructure
    formation in high pressure die casting. Transactions of the Indian Institute of Metals,
    62(4), 499-503. doi:10.1007/s12666-009-0081-2.
  98. Li, X.-B., Xiong, S.-M., & Guo, Z.-P. (2016). Characterization of the Grain Structures
    in Vacuum-Assist High-Pressure Die Casting AM60B Alloy. Acta Metallurgica Sinica
    (English Letters), 29(7), 619-628. doi:10.1007/s40195-016-0430-1.
  99. Wang, Q.-l., & Xiong, S.-m. (2014). Vacuum assisted high-pressure die casting of
    AZ91D magnesium alloy at different slow shot speeds. Transactions of Nonferrous
    Metals Society of China, 24(10), 3051-3059.
  100. Bishenden, C. J. H. W. (2014). venting design and process optimization of die casting
    process for structural components - Part I Venting efficiency analysis of die casting
    process. Die casting Engineer.
  101. Dr.Christophe Bagnoud, R. B. Die evacuation: Valve or chill vent. VDS/SA Vacuum
    Die-casting service, Montreux, Switzerland. Retrieved from
  102. Wang, L., Gershenzon, M., Nguyen, V., & Savage, G. (2005). An Innovative Device
    for Vacuum and Air Venting. CastExpo, 5, 16-19.
  103. Wang, L., Gershenzon, M., Nguyen, V., & Savage, G. (2007). Air evacuation and metal
    solidification with varied profiles of chill surfaces. Paper presented at the 111th
    Metalcasting Congress.
  104. SA, V. (2018). PROVAC® ULTRA EASY VALVES. Retrieved from
  105. corp., G. D. c. Process Controls. Retrieved from
  106. Changhua (Joshua) Huang, W. B. (2015). Experimental investigation into leakage of
    die casting die for vacuum venting process. Paper presented at the Die casting Congress
    & Exposition.
  107. Huang, J. (2016). Vacuum Die Casting Process Design. Retrieved from
  108. Emmenegger, J. (2016). Innovations in Vacuum Die Casting: Vacuum Technology for
    High Quality Die Casting Parts. Fondarex.