Recent advances of high strength Mg-RE alloys: Alloy development, forming and application Author links open overlay panelYongfeng Li a, Ang Zhang a, Chuangming Li a, Hecong Xie a, Bin Jiang a, Zhihua Dong a, Peipeng Jin b, Fusheng Pan a https://doi.org/10.1016/j.jmrt.2023.08.055Get rights and content Abstract To further expand the application of magnesium (Mg) alloys, development of the high strength Mg-rare earth (RE) alloys is strongly desired. The strength of the Mg alloys can be greatly improved through adding RE elements.
Author links open overlay panelQing Zhang a, Stefan Jonsson b, Anders E.W. Jarfors aShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.ijfatigue.2023.107791Get rights and content Under a Creative Commons licenseopen access Highlights Abstract The surface liquid segregation (SLS) layer in semisolid casting presents higher hardness than the surface of specimens cast using high-pressure die casting (HPDC). Bending fatigue tests showed that semisolid castings present better fatigue properties at
Qing Zhang a, Stefan Jonsson b, Anders E.W. Jarfors a aJönköping University, School of Engineering, Materials and Manufacturing, 551 11 Jönköping, SwedenbKTH Royal Institute of Technology, School of Industrial Engineering and Management, Materials Science and Engineering, SE-100 44 Stockholm, Sweden Abstract The surface liquid segregation (SLS) layer in semisolid casting presents higher hardness than the surface of specimens cast using high-pressure die casting
This paper summary is based on the article “Low and High-Pressure Casting Aluminum Alloys: A Review” presented on DOI: 10.5772/intechopen.109869 website. 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: (The online article does not explicitly
WRITTEN BY Helder Nunes, Omid Emadinia, Manuel F. Vieira and Ana Reis Submitted: December 5th, 2022 Reviewed: January 7th, 2023 Published: February 3rd, 2023 DOI: 10.5772/intechopen.109869 FROM THE EDITED VOLUME Recent Advancements in Aluminum Alloys [Working Title] Dr. Shashanka Rajendrachari CHAPTER METRICS OVERVIEW 13 Chapter DownloadsView Full Metrics REGISTER TO DOWNLOAD FOR FREE Share Cite ADVERTISEMENT ADVERTISEMENT Abstract Low-
An Industrial Perspective on Magnesium Alloy Wheels: A Process and Material Design Miaomiao Wang1,21China Copper Institute of Engineering and Technology, Beijing, China.2Kunming Metallurgical Research Institute Co., Ltd. Beijing Branch, Beijing, China.DOI: 10.4236/msa.2023.141002PDFHTML XML18 Downloads 134 Views Abstract Light weights wheels improve vehicle performance with respect to road handling, cornering as well providing fuel economy and reduced greenhouse gas emissions. Aluminum
Author links open overlay panelAndreasSchillingDanielSchmidtJakobGlückNiklasSchwenkeHusamSharabiMartinFehlbierShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.simpat.2022.102585Get rights and content Under a Creative Commons license Open access Abstract In this work, a simulations study on the impact on gravity cast salt cores was carried out for the different casting parameters in high pressure die casting as well as in rheocasting. To compare the simulation results, salt cores were
Xiaolong Gong, Wenming Jiang , Fuchu Liu, Zhiyuan Yang, Feng Guan, and Zitian FanState Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science andTechnology, Wuhan 430074, China Copyright 2020 American Foundry Societyhttps://doi.org/10.1007/s40962-020-00480-9 Abstract The water-soluble salt core with higher bending strength and toughness is necessary to withstand the high pressure
Jun Yaokawa, Daisuke Miura, Koichi Anzai, Youji Yamada, Hiroshi Yoshii Abstract The strength of four binary systems NaCl–Na2CO3, KCl–K2CO3, KCl–NaCl and K2CO3–Na2CO3 was investigated in order to develop expendable salt core for high pressure die casting processes. Four point bending test was conducted to determine the strength of specimens made from molten salts by using the permanent mold casting technique.
Renhe Huang &aamp; Baoping Zhang International Journal of Metalcasting volume 11, pages440–447 (2017)Cite this article Metricsdetails Abstract Soluble salt cores have been successfully used for the die casting of aluminum and magnesium alloys. However, it has not been reported that the soluble salt cores were used for zinc alloy die casting. In this paper, a soluble salt core system