Tag Archives: Applications

Fig. 3 Prototype and thermal-fluid analysis

Analysis of high speed induction motor for spindle made by copper die casting process

Do-Kwan Hong,  Jae-Hak Choi,  Pil-Wan Han,  Yon-Do Chun,  Byung-Chul Woo &  Dae-Hyun Koo  International Journal of Precision Engineering and Manufacturing volume 13, pages2251–2257 (2012)Cite this article Abstract This paper deals with the analysis techniques of a high speed and high efficiency 10 kW, 30,000 rpm rated induction motor. The induction motor has been analyzed by time-varying magnetic finite element

Read More

Fig. 2. Comparison of strengths of salt cores squeezed and shot from different salt kinds (mean value of 6 cores; fraction 0.063 – 1.0 mm; A = squeezed cores (104 MPa); B = shot ones (binder Na – water glass 7.5 – 8.0 bars)

Lost Cores for High-Pressure Die Casting

. Jelínek, E. Adámková*Department of Metallurgy and Foundry Engineering, VŠB-Technical University of Ostrava, listopadu 2172/15, 708 33 Ostrava – Poruba, Czech Republic*Corresponding author. E-mail address: eliska.adamkova@vsb.czReceived 04.03.2014; accepted in revised form 30.03.2014 Abstract Development of salt cores prepared by high-pressure squeezing and shooting with inorganic binders has shown a high potential of the given technology

Read More

Fig. 1. The European classification scheme and the efficiency of investigated motors with aluminum rotors

Design of High Efficiency Induction Motors with Die-Casting Copper Rotors

고효율 유도 전동기 설계 다이캐스팅 구리 로터 Francesco Parasiliti, Marco VillaniDepartment ofElectric Engineering, University ofL’Aquila, 67040 L’Aquila, Italy Abstract The paper deals with the use of copper cage in three-phase low voltage induction motors and gives a design guideline to optimize their efficiency, according to the new European classification scheme. An accurate motor design allows

Read More

Figure 5 - Photographs of Sectioned End Rings from Copper Rotors Typical of Baseline Casting Conditions.

Porosity Control in Copper Rotor Die Castings

Porosity Control in Copper Rotor Die CastingsE. F. Brush, Jr., S. P. Midson, W. G. Walkington, D. T. Peters and J. G. Cowie Abstract This paper reports on the results of an investigation to minimize and control the distributionof porosity in edge-gated copper rotor die castings. A Flow 3-D computer modelingexercise was used to simulate

Read More

Fig. 6 Distribution of temperature (the same Pouring Velocity) (a) L2; (b) L6; (c) L10; (d) L14

Numerical Simulation on Filling Optimization of Copper Rotor for High Efficient Electric Motors in Die Casting Process

Ya’nan Wu1, a, Guojie Huang1, b, Lei Cheng1,c, Daniel Liang2,d, Wei Xiao1,e1State Key Laboratory of Nonferrous Metals and Processes, General Research Institute forNonferrous Metals, Beijing 100088, China2Motor System,International Copper Association Asia, Tian Zuo International Center,Beijing 100081, Chinaaynwu19@163.com, bhuangguojie@grinm.com, cchenglei@grinm.com,dDaniel.liang@copperalliance.asia, ewxiao@ustb.edu.cn Keywords: Numerical Simulation, Copper Rotors, FLOW-3D, Die Casting. Abstract The parametric optimization of process parameter

Read More

Sustainable casting processes through simulation-driven optimization Fig1

Sustainable casting processes through simulation-driven optimization

Michail Papanikolaou, Prateek SaxenaSustainable Manufacturing Systems Centre, Manufacturing Theme, Cranfield University, Cranfield, United Kingdom Available online 1 April 2021. Abstract Since the 1980s, the evolution of the computing power as well as the advances in numerical modeling techniques have allowed for the development of accurate casting simulation solutions. Although casting processes involve a series of

Read More

Fig. 1 Schematic diagram of a typical stir casting apparatus for the production of MMCs. Reproduced from Kok, M., 2005. Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. Journal of Materials Processing Technology 161, 381–387.

Casting Routes for Production of Metallic Based Composite Parts

R Palanivel, Shaqra University, Riyadh, Saudi ArabiaI Dinaharan, Tsinghua University, Beijing, ChinaRF Laubscher, University of Johannesburg, Johannesburg, South Africa 금속 기반 복합 부품 생산을 위한 주조 경로 Introduction A composite material is a material system consisting of a mixture or combination of two or more nano-micro- or macro-based elements with a separating interface where the

Read More

Fig. 7. Cost and mass scaling for the motor subsystems to estimate motor costs for the AHSS and Al lightweight design.

Improvements in electric vehicle battery technology influence vehicle lightweighting and material substitution decisions

Joshua Thomas JamesonBurda, Elizabeth A.Moorea, HeshamEzzatbRandolphKirchainaRichardRothaa Materials Systems Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Ave, E19-695, Cambridge, MA 02139, United Statesb WorldAuto Steel/American Iron and Steel Institute, 2000 Town Center, Suite 320, Southfield, MI 48075, United States Highlights Global demand for and adoption of battery electric vehicles is on the rise. To achieve increased

Read More

Fig. 2. Comparison of strengths of salt cores squeezed and shot from different salt kinds (mean value of 6 cores; fraction 0.063 – 1.0 mm; A = squeezed cores (104 MPa); B = shot ones (binder Na – water glass 7.5 – 8.0 bars)

Lost Cores for High-Pressure Die Casting

P. Jelínek, E. Adámková*Department of Metallurgy and Foundry Engineering, VŠB-Technical University of Ostrava, listopadu 2172/15, 708 33 Ostrava – Poruba, Czech Republic*Corresponding author. E-mail address: eliska.adamkova@vsb.czReceived 04.03.2014; accepted in revised form 30.03.2014 Abstract Development of salt cores prepared by high-pressure squeezing and shooting with inorganic binders has shown a high potential of the given technology

Read More

Schematic of a hot-chamber machine

Hot Chamber Die Casting Method vs Cold Chamber Die Casting Method

Depending on the project, aluminium casting is carried out through a “hot” or “low” process. Diecasting is one of the most economical and fast molding processes. The advantage of this production process is that hundreds of thousands of castings can be produced relatively quickly using a single mold. All parts produced are of uniform quality

Read More