Tag Archives: Salt Core

Figure 8(a) Inverse pole figure maps for halite grains with large Kristallbrocken grains labelled 1–5. (b) Pole figures of fine-grained matrix halite excluding five Kristallbrocken grains show no significant crystallographic preferred orientation (CPO). (c) Kernel average misorientation (KAM) map overlaid with white low- and high-angle grain boundaries (misorientation >5∘). KAM map was calculated over a distance of 40 µm (second neighbour) with a threshold of 3∘ in order to enhance the small-angle subgrain boundaries. KAM shows subgrain-free matrix halite with few exceptions in large matrix halite grains, Kristallbrocken 1 and 5 with subgrains, and subgrains in boudin necks of Kristallbrocken 3 and 4. (d) Cumulative reference orientation deviation map over the areas of Kristallbrocken 3 and 4, based on more highly resolved EBSD measurements. Reference points for each of the two grains are indicated. Panels (a) and (b) consist of 30 individual measurements, which due to image distortion under 70∘ tilt cannot be stitched perfectly. Therefore, in some cases an artificial separation of areas belonging to the same grain is visible

Large grain-size-dependent rheology contrasts of halite at low differential stress: evidence from microstructural study of naturally deformed gneissic Zechstein 2 rock salt (Kristallbrockensalz) from the northern Netherlands

Jessica Barabasch,Joyce Schmatz,Jop Klaver,Alexander Schwedt,and Janos L. Urai Abstract Constitutive laws to predict long-term deformation of solution-mined caverns and radioactive-waste repositories in rock salt play an important role in the energy transition. Much of this deformation is at differential stresses of a few megapascals, while the vast majority of laboratory measurements are at much higher differential

Read More

Figure 9- Left: Schematics of a conventional HPDC cold chamber machine [14]; Right: Typical layout of a component produced by a cold chamber machine [15].

High Pressure Die Casting of Zamak Alloys

Steven Richard Pires de OliveiraDissertação de MestradoOrientador na FEUP: Prof. Doutor Rui Jorge de Lemos NetoOrientador no INEGI: Doutora Inês Vieira de Oliveira Abstract The high pressure die casting process has undergone major advances in recent years, due to its increasing use in the automotive sector. Although aluminum alloys are the most widely used, the

Read More

Fabrication and Characterization of High-strength Water-soluble Composite Salt Cores via Layered Extrusion Forming

Fabrication and Characterization of High-strength Water-soluble Composite Salt Cores via Layered Extrusion Forming

Zheng Chen,  Suo Fan,  Lei Peng,  Yincheng Wang,  Xiaolong Gong,  Xinwang Liu &  Zitian Fan  International Journal of Metalcasting (2022)Cite this article 67 Accesses Metricsdetails Abstract This paper presents a novel process for preparing high-strength water-soluble salt cores with complex structure via layered extrusion forming using K2SO4 and KCl as the base salt materials, which is suitable for manufacturing

Read More

Fabrication of high-strength salt cores for manufacturing hollow aluminum alloy die castings

Fabrication of high-strength salt cores for manufacturing hollow aluminum alloy die castings

Xiaolong Gong, Xiongjie Xiao, Xinwang Liu & Zitian Fan Received 03 Apr 2022, Accepted 21 Apr 2022, Published online: 13 May 2022 Download citation https://doi.org/10.1080/10426914.2022.2072887 CrossMark ABSTRACT In this work, the high-strength composite salt cores reinforced by corundum powder were successfully prepared using 30 mol% Na2SO4 +70 mol% NaCl as the matrix materials, which can be used to fabricate

Read More

Fig. 12. Stress condition on salt core surface immediately after the first impact of the semi solid melt. The flow velocity before impact is 4.55 m/s. The maximum stress on the lower core side is approximately 2.3 MPa.

About the impact on gravity cast salt cores in high pressure die casting and rheocasting

Author links open overlay panelAndreasSchillingDanielSchmidtJakobGlückNiklasSchwenkeHusamSharabiMartinFehlbierShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.simpat.2022.102585Get rights and content Under a Creative Commons license Open access Abstract In this work, a simulations study on the impact on gravity cast salt cores was carried out for the different casting parameters in high pressure die casting as well as in rheocasting. To compare the simulation results, salt cores were

Read More

First-Principles Calculation and Mechanical Properties of NaCl–Na2SO4 Composite Water-Soluble Salt Core

First-Principles Calculation and Mechanical Properties of NaCl–Na2SO4 Composite Water-Soluble Salt Core

Xue-ting Wang,  Wei-hua Liu,  Xuan-yu Liu &  Lai Song  International Journal of Metalcasting (2022)Cite this article 84 Accesses 1 Citations Metricsdetails Abstract In this paper, the interfacial energy of various inorganic salts was calculated using the first principle. Finally, NaCl and Na2SO4 were determined as the core materials. A high-strength composite salt core was prepared by optimizing the distribution ratio

Read More

Figure 10.2. Salt core produced in high temperature and long time

Development of Salt Core Use as an Alternative in Aluminum Alloy Castings.

Tülay Hançerlioğlu 1*1 R&D Department Nemak İzmir Döküm San.A.Ş. tulay.hancerlioglu@nemak.com Orcid: 0000-0003-2373-4405Received: 6 December 2021Accepted: 1 June 2022DOI: 10.18466/cbayarfbe.1033177 Abstract For creating complex geometric shapes in the cast part, salt was used to produce core instead of sandwhich is thermo-chemical or chemical process using resin as a binder. In salt core casting, the efficiencywill be

Read More

Figure 4. Water-soluble experiments of the KNO3-based salt core strengthened by 30 wt.% glass fiber (size = 25 lm) in 80 C water: (a) 0 min; (b) 6 min; (c) 12 min; (d) 18 min

Effects of glass fiber size and content on microstructures and properties of KNO3-based water-soluble salt core for high pressure die casting

Xiaolong Gong, Wenming Jiang , Fuchu Liu, Zhiyuan Yang, Feng Guan, and Zitian FanState Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science andTechnology, Wuhan 430074, China Copyright 2020 American Foundry Societyhttps://doi.org/10.1007/s40962-020-00480-9 Abstract The water-soluble salt core with higher bending strength and toughness is necessary to withstand the high pressure

Read More

In-Mold Coating in Pressing of Natural-Fiber-Reinforced Salt Cores for High-Pressure Die-Casting Applications

In-Mold Coating in Pressing of Natural-Fiber-Reinforced Salt Cores for High-Pressure Die-Casting Applications

Patricia Erhard, Dominik Boos & Daniel Günther Proceedings of the Munich Symposium on Lightweight Design 2021 pp 35–43Cite as In-Mold Coating in Pressing of Natural-Fiber-Reinforced Salt Cores for High-Pressure Die-Casting Applications Patricia Erhard,  Dominik Boos &  Daniel Günther  Conference paper First Online: 06 August 2022 14 Accesses Abstract High-pressure die-casting (HPDC) is known as a highly productive manufacturing process for light metals.

Read More

Fig. 1 - Cross beams: -1) HPDC aluminum, 2) LPDC and extruded aluminum, 3) LPDC and CFRP, 4) Extruded aluminum

Numerical and experimental analysis
of a high pressure die casting Aluminum
suspension cross beam
for light commercial vehicles

S. Cecchel, D. FerrarioThe purpose of the present paper is to enhance and deepen the lightweight optimization in automotive, in particular for commercial vehicles and buses. In detail, aim of this research is to develop a technically reliable and cost effective safety component for Light Commercial Vehicles (LCVs) in aluminum alloy. At this purpose, different

Read More