Tag Archives: High pressure die casting (HPDC)

Fig. 1 Produced part, cast and machined

Optimization in Novel Partial-Solid High Pressure Aluminum Die Casting by Taguchi Method

This article introduces the paper “Optimization in Novel Partial-Solid High Pressure Aluminum Die Casting by Taguchi Method,” providing a comprehensive overview of its key aspects for experts and those interested in die casting technology. 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology: 5. Main Research Results: 6. Conclusion and

Read More

Fig. 1. HPDC process overview.

Analytical Cost Estimation Model in High Pressure Die Casting

This article introduces the paper “Analytical cost estimation model in High Pressure Die Casting” published in Procedia Manufacturing in 2017. 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology: 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material was summarized based

Read More

Figure 14: Biscuity, runner, gating, and venting system on casting (photo permission from Mercury Marine)

SYSTEM UNDERSTANDING OF HIGH PRESSURE DIE CASTING PROCESS AND DATA WITH MACHINE LEARNING APPLICATIONS

This article introduces the paper “SYSTEM UNDERSTANDING OF HIGH PRESSURE DIE CASTING PROCESS AND DATA WITH MACHINE LEARNING APPLICATIONS”. Overview: Research Background: Research Purpose and Research Questions: Research Methodology Main Research Results: Conclusion and Discussion: Future Follow-up Research: References: List of Abbreviations Copyright:

Figure 35: Comparison of the contact pressure scaled by UTS in MAGMA (a) and (c) with the production die casting die at the end of a production run (b) and (d).

THERMOMECHANICAL MECHANISMS THAT CAUSE ADHESION OF ALUMINUM HIGH PRESSURE DIE CASTINGS TO THE DIE

This article introduces the paper “THERMOMECHANICAL MECHANISMS THAT CAUSE ADHESION OF ALUMINUM HIGH PRESSURE DIE CASTINGS TO THE DIE”. Overview: Research Background: Research Purpose and Research Questions: Research Methodology Main Research Results: Conclusion and Discussion: Future Follow-up Research: References: Copyright: This material was summarized based on the above paper, and unauthorized use for commercial purposes

Read More

Fig. 4. Detail of the core balance volume.

About the impact on gravity cast salt cores in high pressure die casting and rheocasting

This article introduces the paper “About the impact on gravity cast salt cores in high pressure die casting and rheocasting”. 1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology: 5. Major Research Findings: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright and Source Material: This summary

Read More

Figure 1. Fin designs on heat sinks: left with all parallel fins, right with angled fins increasing turbulence in the air (cooling medium) and increasing air exchange between the fins to maximize cooling [2].

Vacuum Rheocasting Heat Sinks with Significantly Improved Performance

This article introduces the paper “Vacuum Rheocasting Heat Sinks with Significantly Improved Performance”. 1. Overview: 2. Research Background: The demand for heat sinks across various industries (e-mobility, telecommunications, electronics, etc.) is significantly increasing, along with stricter performance requirements. A primary requirement for heat sinks is high thermal conductivity. Pure aluminum exhibits excellent thermal conductivity (247

Read More

Vehicle giga-casting Al alloys technologies, applications, and beyond

Vehicle giga-casting Al alloys technologies, applications, and beyond

This article introduces the paper “Vehicle giga-casting Al alloys technologies, applications, and beyond”. Author links open overlay panelJian Yang abc, Bo Liu ac, Dongwei Shu b, Qin Yang d, Tiegang Hu dShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.jallcom.2025.178552Get rights and content Abstract The Giga-casting process, proposed by Tesla, has become a transformative technology with great potential for improving the lightweighting of super-sized complex thin-walled vehicle parts. Recently, the application of lightweight

Read More

Fig. 6. Pit-tail test result of HPDC MRI 260D tensile bar (as-cast).

Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications

This article introduces the paper “Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications”. Gerry GangWangJ.P.WeilerMeridian Lightweight Technologies, Strathroy, Ontario N7G 4H6, Canada Abstract The use of magnesium alloy high pressure die cast (HPDC) components for structural applications, especially in the automotive and transportation industries, where weight reduction is of a great concern, is

Read More

Influence of introducing Zr, Ti, Nb and Ce elements on externally solidified crystals and mechanical properties of high-pressure die-casting Al–Si alloy

Influence of introducing Zr, Ti, Nb and Ce elements on externally solidified crystals and mechanical properties of high-pressure die-casting Al–Si alloy

This article introduces the paper “Influence of introducing Zr, Ti, Nb and Ce elements on externally solidified crystals and mechanical properties of high-pressure die-casting Al–Si alloy”. Keywords : aluminium alloy high Abstract High pressure die casting (HPDC) AlSi10MnMg alloy castings are widely used in the automobile industry. Mg can optimize the mechanical properties of castings

Read More

Effective Applications of Copper HPDC Manufacturing

Effective Applications of Copper HPDC Manufacturing

Here is a list of products that are effective when manufactured using Cu (Copper) High Pressure Die Casting (HPDC). The effectiveness in terms of cost and performance can vary depending on complex interactions of factors beyond the manufacturing method, including material properties, design, application requirements, and cost considerations. However, these are the types of components

Read More