Tag Archives: Die casting

Figure 1. Defects in the workpieces revealed in the production process: a) underfilling, b) sticking, c) cracks, d) breakouts, e) discoloration, f) macroporosity.

DEFECT ANALYSIS OF EN AC-435000 ALLOY DIE CASTINGS USING THE PARETO-LORENTZ DIAGRAM

Slash Scrap Rates: A Pareto-Lorenz HPDC Defect Analysis for EN AC-435000 Alloy This technical summary is based on the academic paper “DEFECT ANALYSIS OF EN AC-435000 ALLOY DIE CASTINGS USING THE PARETO-LORENTZ DIAGRAM” by Mariusz HEJNE, Jarosław PIĄTKOWSKI, and Robert WIESZAŁA, published in SCIENTIFIC PAPERS OF SILESIAN UNIVERSITY OF TECHNOLOGY ORGANIZATION AND MANAGEMENT SERIES NO.

Read More

Figure.1. Optical micrographs of the as cast samples (a) Die casting specimen, (b) Squeeze Casting at pressure of 50MPa, (c) Squeeze Casting at pressure of 75MPa, (d) Squeeze Casting at pressure of 100MPa

A Comparative Work on Die Casting and Squeeze Casting Techniques of A319 Cast Aluminium Alloy

Squeeze Casting vs. Die Casting: A Data-Driven Comparison for A319 Aluminum Alloy Components This technical summary is based on the academic paper “A Comparative Work on Die Casting and Squeeze Casting Techniques of A319 Cast Aluminium Alloy” by M. Naveen Kumar, V. Mohanavel, C. Jayasekar, N. Dineshbabu and S. Udishkumar, published in the 11th International

Read More

Fig. 9. Freezing time [s] of materials CP-Al, 2124, 2218, and 6063 prepared at 0, 25, 75, 100, 125 and 150 MPa

EFFECT OF LIQUID FORGING PRESSURE ON SOLUBILITY AND FREEZING COEFFICIENTS OF CAST ALUMINUM 2124, 2218 AND 6063 ALLOYS

How Liquid Forging Pressure Unlocks Superior Hardness and Reduces Porosity in Aluminum Alloys This technical summary is based on the academic paper “EFFECT OF LIQUID FORGING PRESSURE ON SOLUBILITY AND FREEZING COEFFICIENTS OF CAST ALUMINUM 2124, 2218 AND 6063 ALLOYS” by Vineet Tirth and Amir Arabi, published in Archives of Metallurgy and Materials (2020). It

Read More

Fig.1 Thermal analysis of the temperature profile obtained by the inverse heat transfer model

MICROSTRUCTURE SIMULATION OF HIGH PRESSURE DIE CAST MAGNESIUM ALLOY BASED ON MODIFIED CA METHOD

This introduction paper is based on the paper “MICROSTRUCTURE SIMULATION OF HIGH PRESSURE DIE CAST MAGNESIUM ALLOY BASED ON MODIFIED CA METHOD” published by “ACTA METALLURGICA SINICA”. 1. Overview: 2. Abstract: As the lightest structural material, magnesium alloy has been widely used in the automotive, aerospace and electronic industries. High pressure die casting (HPDC) process

Read More

Fig.1. Cause and effect diagram (Ishikawa diagram) for casting porosity

Optimization of process parameters of High Pressure Die Casting process for ADC12 Aluminium alloy using Taguchi method

This introduction paper is based on the paper “[Optimization of process parameters of High Pressure Die Casting process for ADC12 Aluminium alloy using Taguchi method]” published by “[International Journal of Pure and Applied Mathematics]”. 1. Overview: 2. Abstract: A study has been carried out to optimize the die casting process parameters in order to achieve

Read More

Fig. 1. Air Porosity in the section of an aluminium diecast part

ANALYZE OF THE POSSIBLE CAUSES OF POROSITY TYPE DEFFECTS IN ALUMINIUM HIGH PRESSURE DIECAST PARTS

Mastering HPDC: A Deep Dive into the Causes and Cures for Porosity Defects in Aluminum Parts This technical summary is based on the academic paper “ANALYZE OF THE POSSIBLE CAUSES OF POROSITY TYPE DEFFECTS IN ALUMINIUM HIGH PRESSURE DIECAST PARTS” by Ferencz Peti and Lucian Grama, published in the Scientific Bulletin of the „Petru Maior”

Read More

Fig. 1. Photograph of the project under analysis. View: a) from the fixed half; b) from the mobile half

Effect of Cavitation Phenomenon on the Quality of High-Pressure Aluminium Alloy Castings

How Vacuum Casting Intensifies HPDC Cavitation and What to Do About It This technical summary is based on the academic paper “Effect of Cavitation Phenomenon on the Quality of High-Pressure Aluminium Alloy Castings” by Marcin Brzeziński and Jakub Wiśniowski, published in the Journal of Casting & Materials Engineering (2023). It has been analyzed and summarized

Read More

Fig. 16. Thin wall heat dissipation shells (a, b, and c — front, back, and perspective view, respectively), which are produced by air cooled stirring rod (ACSR) process combined with high-pressure die casting machine [51]. Here, A, B, C, and D — regions from which the samples were prepared [51] to study their microstructure and mechanical properties

CASTING QUALITY ENHANCEMENT USING NEW BINDERS ON SAND CASTING AND HIGH-PRESSURE RHEO-DIE CASTING

Beyond Conventional HPDC: How Rheo-Casting Improves Mechanical Properties and Reduces Porosity This technical summary is based on the academic paper “CASTING QUALITY ENHANCEMENT USING NEW BINDERS ON SAND CASTING AND HIGH-PRESSURE RHEO-DIE CASTING” by P. Puspitasari and J.W. Dika, published in Prog. Phys. Met., Vol. 20, No. 3 (2019). It has been analyzed and summarized

Read More

Figure 1. Photographs of the die-casting die used for manufacturing mechanical parts after the diecasting operation, showing (a) the die cavity and heat-checking and (b) the core pin.

MATERIAL PROPERTIES OF DIE-CASTING DIE AROUND HEAT-CHECKING CREATED BY A HIGH-PRESSURE ALUMINUM ALLOY DIE-CASTING OPERATION

Unlocking the Secrets of Die-Casting Die Heat-Checking: New Research Reveals Root Causes and Mitigation Clues This technical summary is based on the academic paper “MATERIAL PROPERTIES OF DIE-CASTING DIE AROUND HEAT-CHECKING CREATED BY A HIGH-PRESSURE ALUMINUM ALLOY DIE-CASTING OPERATION” by Mitsuhiro Okayasu and Junya Shimazu, published in International Journal of Metalcasting (2025). It has been

Read More

Fig. 4. Schematic view of individual devices in the casting workplace: (1 – high pressure casting machine, 2 – machine extraction, 3 – cutting press, 4 – data matrix code punch, 5 – foundry mould treatment manipulator, 6 – cooling bath, 7 – holding furnace, 8 – handling robot, 9 – robotic, automatic palletizing)

Green Innovations in Foundry Production Processes of Automobile Castings

Driving Down Costs and CO2: A Deep Dive into Energy-Saving Innovations for Automotive HPDC This technical summary is based on the academic paper “Green Innovations in Foundry Production Processes of Automobile Castings” by Josef Bradáč, Martin Folta, Jiří Machuta, Jiří Slabý, and Michal Beneš, published in Rocznik Ochrona Środowiska (2024). It has been analyzed and

Read More