CASTMAN has been introducing outstanding die-casting products through leading activities in the die-casting industry, and continuously contributing to the manufacturing industry. High pressure die casting is often an excellent process for quickly manufacturing many parts and has a high level of engineering skills. With CASTMAN’s high pressure die casting, you can quickly produce complex shaped parts using highly
Aluminum high-pressure die casting is a widely used manufacturing process known for its high efficiency and precision. However, producing parts with undercut shapes—features that interfere with the mold opening direction—poses significant challenges. Traditional solutions, such as slide cores or multi-part molds, increase complexity, costs, and limit design flexibility. Application of Salt Core Technology for Undercut
List of Semiconductor Manufacturing Equipment Parts This list provides potential components for semiconductor manufacturing equipment that could be, or are, produced using high-pressure aluminum die casting. The following list is based on general knowledge of die casting applications and semiconductor equipment design. List of Semiconductor Manufacturing Equipment Parts Potentially Made via High-Pressure Aluminum Die Casting:
by Andrea Sütőová 1,*, Róbert Kočiško 1,*, Patrik Petroušek 1, Martin Kotus 2, Ivan Petryshynets 3 and Andrii Pylypenko 4 Abstract The wear and degradation of tools applied in the high-pressure die casting of Al alloys induce significant financial losses. The formation of failures on the surface of mold parts caused by erosion, thermal fatigue, corrosion, and soldering negatively affects the surface quality
Naveen SinghalResearch ScholarDept of Mechanical Engineering Arni University-H.P. Dr. Sangeeth GuptaProfessorArni University-H.P Dr.Krishnamachary P CProfessor & PrincipalJ.B.Institute of Engineering & Technology-Hyderabad. Abstract In order to provide ecological balance, new technologies are being developed to reduce fuel consumption. Within these new technologies, usage of light alloys such as aluminum and magnesium has gained great importance in
Jian Yang ab, Bo Liu ab, Yunbo Zeng c, Yiben Zhang ab, Haiyou Huang de, Jichao Hong bShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.engappai.2024.108514Get rights and content Abstract This research aims to provide a solution to the scarcity and fragmentation of industrial data on die casting aluminum alloys. Quantifying the coupling between die casting process-composition-properties of aluminum alloys through small datasets, is a critical step in predicting part properties and optimizing process selection. To
Download PDF You have full access to thisopen accessarticle International Journal of MetalcastingAims and scopeSubmit manuscript Abstract Lightweight design can reduce CO2 emissions and improve energy efficiency, especially in the fuel-intensive transportation sector. Multi-material design approaches can combine specific properties of materials for effective lightweight design. A multi-material component made from two metals used widely in
Hongyi Zhu, Cunjuan Xia, Huawei Zhang, Dechao Zhao, Mingliang Wang & Haowei Wang Abstract In recent years, Non-Heat Treatable High Pressure Die Casting Al alloys (NHT-HPDC Al alloys) have been proposed and developed for integrated die casting in the automotive industry. These alloys exhibit excellent castability and can achieve sufficient mechanical properties without the need for heat treatment. Despite their industrial
Xiaorou Ning, Keke Zuo, Yang Li, Wanting Guo, Xiao Peng, Jianguo Su, Lai Song, Weihua Liu, Tongyu Liu & Yuyan Ren Abstract In the process of pouring salt cores, it is crucial to select the appropriate mold temperature, which is essential for the shaping and strength of the salt cores. Additionally, salt cores need to undergo water-soluble cleaning after casting, which has certain requirements for