Tag Archives: High pressure die casting (HPDC)

Figure 2 CAD model of the sample geometry in 3D (see online version for colours)

Comparative RANS turbulence modelling of lost salt core viability in high pressure die casting

Sebastian Kohlstädt* and Michael VynnyckyDepartment of Materials Science and Engineering,KTH Royal Institute of Technology,Brinellvägen 23,100 44 Stockholm, SwedenEmail: skoh@kth.seEmail: michaelv@kth.se*Corresponding author Abstract In this work, the implementation of three turbulence models inside the open source C++ computational fluid dynamics (CFD) library OpenFOAM were tested in 2D and 3D to determine the viability of salt cores

Read More

Figure 1. SEM morphologies of the glass fibers: (a) sample 1 (size = 74 lm), (b) sample 2 (size = 25 lm) and (c) sample 3 (size = 12.5 lm)

Effects of glass fiber size and content on microstructures and properties of KNO3-based water-soluble salt core for high pressure die casting

Xiaolong Gong,  Wenming Jiang,  Fuchu Liu,  Zhiyuan Yang,  Feng Guan &  Zitian Fan  International Journal of Metalcasting volume 15, pages520–529 (2021)Cite this article 187 Accesses 2 Citations Metrics Abstract The water-soluble salt core with higher bending strength and toughness is necessary to withstand the high pressure needed to manufacture some complex parts by high pressure die casting (HPDC). In this paper,

Read More

Figure 7. Detail of fixing pins in the fixed die cavity for placing the aluminium foam.

Aluminium Foam and Magnesium Compound Casting Produced by High-Pressure Die Casting

by Iban Vicario 1,*,Ignacio Crespo 2,†,Luis Maria Plaza 2,Patricia Caballero 1,† andIon Kepa Idoiaga 3,‡1Department of Foundry and Steel making, Tecnalia Research & Innovation, c/Geldo, Edif. 700, E-48160 Derio, Spain2Department of Aerospace, Tecnalia Research & Innovation, c/Mikeletegi 2, E-20009 Donostia, Spain3Industrias Lebario, c/Arbizolea 4, E-48213 Izurza, Spain*Author to whom correspondence should be addressed.†These authors contributed equally to this work.‡This author supervised this

Read More

Fig. 1. Image of the engine module with Oil Pan [5].

Computer aided engineering (CAE) simulation for the design optimization of gate system on high pressure die casting (HPDC) process

Hyuk-JaeKwonaHong-KyuKwonbaDepartment of Civil Engineering, Cheongju University, Cheongju-city, Choongnam, South KoreabDepartment of Industrial & Management Engineering, Namseoul University, Cheonan-city, Choongnam, South Korea Abstract A most important progress in civilization was the introduction of mass production. HPDC molds are one of main technologies for mass production. Due to the high velocity of the liquid metal, aluminum die-casting

Read More

Figure 3. Buckling analysis model: boundary condition and load cases.

Experimental and Numerical Study of an Automotive Component Produced with Innovative Ceramic Core in High Pressure Die Casting (HPDC)

by  1,*, 1, 1, 2, 1, 1 and 1 1DIMI, Department of Industrial and Mechanical Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy 2Co.Stamp. s.r.l. Via Verdi 6, 23844 Sirone (LC), Italy*Author to whom correspondence should be addressed. Metals2019, 9(2), 217;Received: 14 December 2018 / Revised: 7 February 2019 / Accepted: 8 February 2019 / Published: 12 February 2019 Abstract Weight reduction

Read More

Fig. 1. Cause and effect diagram.

Optimizing process parameters to reduce blowholes in high pressure die casting using Taguchi methodology

N. Rathinam ⇑, R. Dhinakaran, E. SharathDepartment of Mechanical Engineering, Pondicherry Engineering College, Pillaichavady, Puducherry, 605014, India Abstract Products manufactured from every manufacturing process exhibit some defects. To supply quality products to the customer these defects must be reduced. The motivation for this work is to reduce defects in end products reaching customers, thereby increasing

Read More

Thermal hot spot prediction in high pressure die casting by determination of Chvorinovs rule shape constant

Thermal hot spot prediction in high pressure die casting by determination of Chvorinovs rule shape constant

Suraj Marathea Carmo QuadrosbaDepartment of Mechanical, Don Bosco College of Engineering, Fathorda, Madgoa Goa 403602, IndiabDepartment of Mechanical, Assam Don Bosco University, Tapesia Gardens, Kamarkuchi Sonapu, Assam 782402, India Available online 11 April 2021. Abstract This paper identifies the approximate height of thermal hot spots in casting components manufactured by high pressure die casting. Certain assumptions

Read More

Figure 15. R-HPDC automobile shock absorber part.

R-HPDC Process with Forced Convection Mixing Device for Automotive Part of A380 Aluminum Alloy

by Bing Zhou,Yonglin Kang *,Mingfan Qi,Huanhuan Zhang andGuoming ZhuSchool of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China*Author to whom correspondence should be addressed.Materials2014, 7(4), 3084-3105; https://doi.org/10.3390/ma7043084Received: 24 March 2014 / Revised: 4 April 2014 / Accepted: 4 April 2014 / Published: 15 April 2014(This article belongs to the Special Issue Light Alloys and Their Applications)

Read More

Figure 3: Experimentation setup: vertical die casting machine of the capacity of 100 Tons (Industrial caseCGL)

Analysis and Optimisation of High Pressure Die Casting Parameters to Achieve Six Sigma Quality Product Using Numerical Simulation Approach

Suraj R. Marathe Assam Don Bosco University, Carmo E. Quadros Assam Don Bosco UniversityDate Written: February 13, 2021 Abstract A numerical simulation approach is proposed to predict the optimal parameter setting during high pressure die casting. The contribution from the optimal parameters, the temperature, showed more influence on the casting quality than the other parameters.

Read More

Figure 1. Crank case specimen produced with the HPDC process.

Minimizing the Casting Defects in High Pressure Die Casting Using Taguchi Analysis

Authors Surkhail Tariq 1  Adnan Tariq   2  Manzar Masud 3  Zabdur Rehman  4 1 Department of Mechanical Engineering, Wah Engineering College, University of Wah, Wah Cantt 47040, Pakistan 2 Department of Mechanical Engineering, Wah Engineering College, University of Wah, Wah Cantt 47040,Pakistan 3 Department of Mechanical Engineering, Capital University of Science and Technology, Islamabad 44000, Pakistan 4 Department of Mechanical Engineering, Air University

Read More