Tag Archives: High pressure die casting (HPDC)

Figure 1: Intermediate Flange

Die Designing and Molten Metal Flow Analysis for Intermediate Flange

Eliminating Porosity Defects in HPDC: A Flow Analysis Case Study for Intermediate Flanges This technical summary is based on the academic paper “DIE DESIGNING AND MOLTEN METAL FLOW ANALYSIS FOR INTERMEDIATE FLANGE” by K Maheswari and G Sureshkumar, published in the International Journal of Mechanical Engineering and Robotics Research (2013). Keywords Executive Summary The Challenge:

Read More

Fig. 2 The rear actuator and steering of automobile

Research Status and Future Development Trend of Die Casting Aluminum Alloys

A Deep Dive into Advanced Die-Casting Aluminum Alloys: Enhancing Performance for Automotive and Beyond This technical summary is based on the academic paper “压铸铝合金研究现状与未来发展趋势 (Research Status and Future Development Trend of Die Casting Aluminum Alloys)” by 樊振中 (FAN Zhen-zhong), 袁文全 (YUAN Wen-quan), et al., published in FOUNDRY (2020). Keywords Executive Summary The Challenge: Why This

Read More

Fig. 3. Electrical conductivity of as-cast binary aluminium alloys (containing larger amounts of the alloying additions) as a function of concentration of the alloying element [5]

The Influence of Chemical Composition and Parameters of Heat Treatment on the Mechanical Properties and Electrical Conductivity in Hypoeutectic Aluminium Silicon Alloys

Balancing Act: Optimizing Heat Treatment for High Conductivity Aluminum Casting Alloys This technical summary is based on the academic paper “The Influence of Chemical Composition and Parameters of Heat Treatment on the Mechanical Properties and Electrical Conductivity in Hypoeutectic Aluminium Silicon Alloys” by J. Wiecheć, P. Uliasz, T. Knych, M. Piwowarska–Uliasz, and R. Jarosz, published

Read More

Table 1. Review of some casting processes that can be used for the production of E-parts

From Bauxite as a Critical Material to the Required Properties of Cast Aluminum Alloys for Use in Electro Automotive Parts

From Bauxite to Battery Housings: Optimizing Cast Aluminum Alloys for Modern Electric Vehicle Parts This technical summary is based on the academic paper “From Bauxite as a Critical Material to the Required Properties of Cast Aluminum Alloys for Use in Electro Automotive Parts” by Mile Djurdjevic, Srecko Manasijevic, Marija Mihailović, and Srecko Stopic, published in

Read More

Mathematical modeling of aluminum alloys

Mathematical modeling of aluminum alloys

Unlocking Peak Performance: How Mathematical Modeling of Aluminum Alloys Is Revolutionizing HPDC This technical summary is based on the academic paper “Mathematical modeling of aluminum alloys” by Adelina Miteva, Margarita Dimitrova, published in INTERNATIONAL SCIENTIFIC JOURNAL “MATHEMATICAL MODELING” (2024). Keywords Executive Summary The Challenge: Why This Research Matters for HPDC Professionals In modern industries from

Read More

Figure 1: Die casting rotor component and cs at AA and BB for numerical analysis

Analysis and Optimisation of High Pressure Die Casting Parameters to Achieve Six Sigma Quality Product Using Numerical Simulation Approach

Optimizing High Pressure Die Casting Parameters: A Simulation-Driven Path to Six Sigma Quality This technical summary is based on the academic paper “Analysis and Optimisation of High Pressure Die Casting Parameters to Achieve Six Sigma Quality Product Using Numerical Simulation Approach” by Suraj R. Marathe and Dr. Carmo E. Quadros, published in the International Journal

Read More

Figure1 Fraction of phase in the Scheil model (a); Fractionof phase in the DB model (b).

Investigation on Heat Treatment Process Optimization of Super-Slow-Speed Die Casting A356.2 Alloy

Optimizing A356.2 Alloy: A Data-Driven Guide to Heat Treatment in Super-Slow-Speed Die Casting (SSS HPDC) This technical summary is based on the academic paper “Investigation on Heat Treatment Process Optimization of Super-Slow-Speed Die Casting A356.2 Alloy” by Lu Zhang¹,², Hengcheng Liao¹, Jiang Li², Liangchao Tang ², published in The 75th World Foundry Congress (2024). Keywords

Read More

Fig. 1. Integrated fully automatic HPDC cell: (a) furnace, melt feeding and casting extraction; (b) heating, cooling and spraying units; (c) HPDC die and die temperature control systems.

Effect of high pressure die casting on the castability, defects and mechanical properties of aluminium alloys in extra-large thin-wall castings

Redefining HPDC Castability: How Effective Flow Length (EFL) Unlocks Ductility in Extra-Large Structural Components This technical summary is based on the academic paper “Effect of high pressure die casting on the castability, defects and mechanical properties of aluminium alloys in extra-large thin-wall castings” by Zhichao Niu, Guangyu Liu, Tian Li, and Shouxun Ji, published in

Read More

Figure 2.1: Die Slabs containing Die insert

HPDC Die design for Additive Manufacturing

Can Additive Manufacturing Create Lightweight HPDC Dies That Withstand Extreme Stresses? A Simulation Study This technical summary is based on the academic paper “HPDC Die design for Additive Manufacturing” by Mohammadali Baradaran and Ambareeksh Tharayil Pradeep, published by Jönköping University (2018). Keywords Executive Summary The Challenge: Why This Research Matters for HPDC Professionals In the

Read More

Fig. 1 SEED pulping process principle [3]

Effect of T6 Treatment on Microstructures and Mechanical Properties of Semi-Solid A356 Alloy

Unlocking Peak Performance in A356 Alloy: A Deep Dive into T6 Heat Treatment for Semi-Solid Die Casting This technical summary is based on the academic paper “Effect of T6 Treatment on Microstructures and Mechanical Properties of Semi-Solid A356 Alloy” by Jun Zhou, Caihua Wang*, and Larry Wang, published in The 75th World Foundry Congress (2024).

Read More