Tag Archives: Efficiency

Figure 18 Comprehensive opportunities for polymers and polymer composites with associated manufacturing processes for lightweighting in vehicles. Abbreviations: BMC, bulk molding compound; HP RTM, high-pressure resin transfer molding; LFT, long-fiber thermoplastic; SMC, sheet molding compound. Adapted from Reference 105.

Materials for Automotive Lightweighting

This article introduces the paper “Materials for Automotive Lightweighting”. 1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology: 5. Main Research Findings: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material is based on the paper by [Alan Taub et al.] titled: [Materials for Automotive

Read More

Fig. 4. Z-shaped section of the cylinder block

Materials in Automotive Engineering

This article introduces the paper “Materials in Automotive Engineering”. 1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology 5. Key Research Findings: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material is a summary based on the above paper, and unauthorized use for commercial purposes

Read More

Figure 4 - Part regions.

Defect reduction using Lean Six Sigma and DMAIC

This article introduces the paper “Defect reduction using Lean Six Sigma and DMAIC,” providing a detailed overview of its methodology, findings, and implications for the die-casting industry. 1. Overview 2. Research Background 3. Research Objectives and Research Questions 4. Research Methodology 5. Key Research Findings 6. Conclusion and Discussion 7. Future Research 8. References 9.

Read More

Fig. 1. Life cycle boundary of vehicle Al DCs and detailed processes in the manufacturing stage.

Critical life cycle inventory for aluminum die casting: A lightweight-vehicle manufacturing enabling technology

This article introduces the paper “Critical life cycle inventory for aluminum die casting: A lightweight-vehicle manufacturing enabling technology”. 1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology: 5. Key Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material is based on the paper

Read More

Fig. 1. Life cycle assessment flow-chart.

Cradle-to-Gate Impact Assessment of a High-Pressure Die-Casting Safety-Relevant Automotive Component

This article introduces the paper “Cradle-to-Gate Impact Assessment of a High-Pressure Die-Casting Safety-Relevant Automotive Component”. 1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology: 5. Key Research Findings: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material is a summary based on the above paper,

Read More

Fig. 4 Operations for forging control arm a bending, b flattening, and c forging. (Color figure online)

Magnesium 2021: Proceedings of the 12th International Conference on Magnesium Alloys and their Applications

This article introduces the paper “Magnesium 2021: Proceedings of the 12th International Conference on Magnesium Alloys and their Applications”. 1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology: 5. Main Research Findings: Fig. 1 Schematic diagram of thermic reduction equipment. (Color figure online) 6. Conclusion and Discussion: 7. Future Follow-up

Read More

Figure 20: The deformation of the salt core in a casting experiment; Uin = 30 ms−1

On determining lost core viability in high-pressure die casting using Computational Continuum Mechanics

This article introduces the paper “On determining lost core viability in high-pressure die casting using Computational Continuum Mechanics”. 1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material is a summary written based

Read More

Figure 1. Overview of the LED Headlamp

LED Headlamp Development for Mass Production

This article introduces the paper “LED Headlamp Development for Mass Production”. 1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology 5. Key Research Findings: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material is a summary based on the above paper, and unauthorized use for

Read More

Fig. 9 A model proto-typed for experiment

Effect of Heat Sink Structure on Cooling Performance of LED Bulb

This article introduces the paper “Effect of Heat Sink Structure on Cooling Performance of LED Bulb”. 1. Overview: 2. Research Background: LEDs are increasingly used due to their long lifespan and high efficiency. However, LEDs are point heat sources, leading to localized temperature increases in the surrounding polymer molding material, peripheral devices, and the LED

Read More

Fig. 14. Heat pipe heat sink for low beam LED package cooling

Cooling of LED headlamp in automotive by heat pipes

This article introduces the paper “Cooling of LED headlamp in automotive by heat pipes”. 1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology: 5. Key Research Findings: 6. Conclusion and Discussion: 8. References: [1] US Department of Energy, Energy Efficiency of LEDs, PNNL-SA-94206, March 2013, Available: http://energy.gov/eere/ssl/downloads/energy-efficiency-leds.[2] OSRAM GmBH, Viewed:

Read More