Tag Archives: Aluminum Casting

Figure 2. Illustration of boundary conditions for the finite element model; (a) conventional die casting die, (b) lightweight design die; see Table 1 for notes on 1–8.

AN INITIAL STUDY OF A LIGHTWEIGHT DIE CASTING DIE USING A MODULAR DESIGN APPROACH

This page summarizes the research paper “An Initial Study of a Lightweight Die Casting Die Using a Modular Design Approach,” published in the International Journal of Metalcasting in 2018. This study investigates the potential of a modular lightweight die casting die design to reduce energy consumption and improve the efficiency of the high-pressure die casting

Read More

Figure 14: Biscuity, runner, gating, and venting system on casting (photo permission from Mercury Marine)

SYSTEM UNDERSTANDING OF HIGH PRESSURE DIE CASTING PROCESS AND DATA WITH MACHINE LEARNING APPLICATIONS

Overview: Research Background: Research Purpose and Research Questions: Research Methodology Main Research Results: Conclusion and Discussion: Future Follow-up Research: References: List of Abbreviations Copyright:

Figure 35: Comparison of the contact pressure scaled by UTS in MAGMA (a) and (c) with the production die casting die at the end of a production run (b) and (d).

THERMOMECHANICAL MECHANISMS THAT CAUSE ADHESION OF ALUMINUM HIGH PRESSURE DIE CASTINGS TO THE DIE

Overview: Research Background: Research Purpose and Research Questions: Research Methodology Main Research Results: Conclusion and Discussion: Future Follow-up Research: References: Copyright: This material was summarized based on the above paper, and unauthorized use for commercial purposes is prohibited.Copyright © 2025 CASTMAN. All rights reserved.

Fig. 1. A TA Transmission Case casting.

Effect of melt cleanliness on the formation of porosity defects in automotive aluminium high pressure die castings

1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology 5. Key Research Findings: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material is a summary based on the above paper, and unauthorized use for commercial purposes is prohibited.Copyright © 2025 CASTMAN. All rights reserved.

Figure 1. Developed hollow aluminum subframe

Development of Aluminium Hollow Subframe Using High-Pressure Die Casting

1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology: 5. Key Research Findings: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material is based on the paper by [Akihiko Asami, Tomoyuki Imanishi, Yukio Okazaki, Tomohiro Ono, and Kenichi Tetsuka]titled: [Development of Aluminium Hollow Subframe Using

Read More

Figure 18 Comprehensive opportunities for polymers and polymer composites with associated manufacturing processes for lightweighting in vehicles. Abbreviations: BMC, bulk molding compound; HP RTM, high-pressure resin transfer molding; LFT, long-fiber thermoplastic; SMC, sheet molding compound. Adapted from Reference 105.

Materials for Automotive Lightweighting

1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology: 5. Main Research Findings: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material is based on the paper by [Alan Taub et al.] titled: [Materials for Automotive Lightweighting].Paper Source: [https://doi.org/10.1146/annurev-matsci-070218-010134] This material is a summary based

Read More

Fig. 1: Illustration of engine block with 6 ingates and the vacuum channels.

Correlation Between Microstructure and Mechanical Properties of Al-Si Diecast Engine Blocks

1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology: 5. Key Research Findings: 6. Conclusion and Discussion: 7. Future Research Directions: 8. References: [1] Colás, R., A. Rodríguez, J. Talamantes, and S. Valtierra. Solidification analysis of aluminium engine block. Int. J. Cast Metals Res., 17 (2004), 332-338.[2] Verran, G.O., R.P.K.

Read More

Fig. 4. Detail of the core balance volume.

About the impact on gravity cast salt cores in high pressure die casting and rheocasting

1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology: 5. Major Research Findings: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright and Source Material: This summary is based on the paper “About the impact on gravity cast salt cores in high pressure die casting and rheocasting”

Read More

Die tool: (a) both tool half and the vacuum valve connection; (b) vacuum unit.

Influence of Vacuum Support on the Fatigue Life of AlSi9Cu3(Fe) Aluminum Alloy Die Castings

Execute Summary – Core Research Objective: To compare the high-cycle fatigue behavior of AlSi9Cu3(Fe) aluminum alloy die castings produced using high-pressure die casting (HPDC) and vacuum-assisted die casting (VPDC) processes, and to elucidate the influence of casting defects on fatigue failure. – Main Methodologies: Non-destructive testing (NDT) methods (hydrostatic weighing, X-ray inspection, and computed tomography (CT)) were

Read More

Six mega aluminum shape castings forming the entire lower body structure for Cadillac Celestiq vehicles

Ultra-large aluminum shape casting: Opportunities and challenges

Qi-gui Wang, Andy Wang & Jason Coryell  Abstract Ultra-large aluminum shape castings have been increasingly used in automotive vehicles, particularly in electric vehicles for light-weighting and vehicle manufacturing cost reduction. As most of them are structural components subject to both quasi-static, dynamic and cyclic loading, the quality and quantifiable performance of the ultra-large aluminum shape castings is critical

Read More