This page summarizes the research paper “An Initial Study of a Lightweight Die Casting Die Using a Modular Design Approach,” published in the International Journal of Metalcasting in 2018. This study investigates the potential of a modular lightweight die casting die design to reduce energy consumption and improve the efficiency of the high-pressure die casting
Overview: Research Background: Research Purpose and Research Questions: Research Methodology Main Research Results: Conclusion and Discussion: Future Follow-up Research: References: List of Abbreviations Copyright:
1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology: 5. Key Research Findings: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material is based on the paper by [Akihiko Asami, Tomoyuki Imanishi, Yukio Okazaki, Tomohiro Ono, and Kenichi Tetsuka]titled: [Development of Aluminium Hollow Subframe Using
1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology: 5. Main Research Findings: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material is based on the paper by [Alan Taub et al.] titled: [Materials for Automotive Lightweighting].Paper Source: [https://doi.org/10.1146/annurev-matsci-070218-010134] This material is a summary based
1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology: 5. Key Research Findings: 6. Conclusion and Discussion: 7. Future Research Directions: 8. References: [1] Colás, R., A. Rodríguez, J. Talamantes, and S. Valtierra. Solidification analysis of aluminium engine block. Int. J. Cast Metals Res., 17 (2004), 332-338.[2] Verran, G.O., R.P.K.
1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology: 5. Major Research Findings: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright and Source Material: This summary is based on the paper “About the impact on gravity cast salt cores in high pressure die casting and rheocasting”
Execute Summary – Core Research Objective: To compare the high-cycle fatigue behavior of AlSi9Cu3(Fe) aluminum alloy die castings produced using high-pressure die casting (HPDC) and vacuum-assisted die casting (VPDC) processes, and to elucidate the influence of casting defects on fatigue failure. – Main Methodologies: Non-destructive testing (NDT) methods (hydrostatic weighing, X-ray inspection, and computed tomography (CT)) were
Qi-gui Wang, Andy Wang & Jason Coryell Abstract Ultra-large aluminum shape castings have been increasingly used in automotive vehicles, particularly in electric vehicles for light-weighting and vehicle manufacturing cost reduction. As most of them are structural components subject to both quasi-static, dynamic and cyclic loading, the quality and quantifiable performance of the ultra-large aluminum shape castings is critical