Tag Archives: aluminum alloy

Volumetric distribution of porosities in a 3D reconstructed CT image at 60% transparency.

Detection of Porosity in Impregnated Die-Cast Aluminum Alloy Piece by Metallography and Computer Tomography

by  Mihály Réger 1, József Gáti 1, Ferenc Oláh 1,2, Richárd Horváth 1,*, Enikő Réka Fábián 1 and Tamás Bubonyi 3 1Bánki Donát Faculty of Mechanical and Safety Engineering, University of Óbuda, H-1081 Budapest, Hungary 2Doctoral School on Materials Sciences and Technologies, University of Óbuda, H-1081 Budapest, Hungary 3Institute of Metal Formation and Nanotechnology, University of Miskolc, H-3515 Miskolc, Hungary *Author to

Read More

Fig. 1. Photograph of the project under analysis. View: a) from the fixed half; b) from the mobile halfFig. 2. Thermal images of the mould used in the study: a) fixed half; b) mobile halfFig. 3. The result of an input simulationa)b)a)b)

Effect of Cavitation Phenomenon on the Quality ofHigh-Pressure Aluminium Alloy Castings

DOI:  https://doi.org/10.7494/jcme.2023.7.3.27 ABSTRACT This article presents an analysis of the effect of cavitation on the erosion of pressure moulds intended for the HPDC casting mould manufacturing process. Changes in the surface area of the eroded areas were investigated via photographs of castings at the beginning of the mould life as well as at 30%. The

Read More

Figure 6. Fluid velocity vector of the cylindrical riser tube (left) and the cone-shaped tube (right) [33]

Low- and High-Pressure Casting Aluminum Alloys: A Review

This paper summary is based on the article “Low and High-Pressure Casting Aluminum Alloys: A Review” presented on DOI: 10.5772/intechopen.109869 website. 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: (The online article does not explicitly

Read More

Development of High-Ductility and Low-Hot-Tearing-Susceptibility Non-heat Treatment Al–Mg–Mn-Based Die Casting Alloy for Automotive Structural Parts

Development of High-Ductility and Low-Hot-Tearing-Susceptibility Non-heat Treatment Al–Mg–Mn-Based Die Casting Alloy for Automotive Structural Parts

International Journal of Metalcasting (2023)Cite this article Abstract Non-heat-treated Al–Mg-based die casting alloys have been developed for the structural parts of automobiles. In previous studies, alloy compositions with at least 1.0%Si have been proposed to reduce the hot tearing susceptibility (HTS). On the other hand, the increase in the Si content reduces the ductility. For some

Read More

Figure 4. General scheme of the LPC cycle [33].

Low- and High-Pressure Casting Aluminum Alloys: A Review

WRITTEN BY Helder Nunes, Omid Emadinia, Manuel F. Vieira and Ana Reis Submitted: December 5th, 2022 Reviewed: January 7th, 2023 Published: February 3rd, 2023 DOI: 10.5772/intechopen.109869 FROM THE EDITED VOLUME Recent Advancements in Aluminum Alloys [Working Title] Dr. Shashanka Rajendrachari CHAPTER METRICS OVERVIEW 13 Chapter DownloadsView Full Metrics REGISTER TO DOWNLOAD FOR FREE Share Cite ADVERTISEMENT ADVERTISEMENT Abstract Low-

Read More

Figure 3. Casting of SB 55 variant with gating system.

Influence of HPDC Process Parameters on the Microstructure of EC Electromotor Housing

Influence of HPDC Process Parameters on the Microstructure of EC Electromotor Housing Marek Brůna 1, Martin Medňanský 1,*, Marek Matejka 1 and Radka Podprocká 2 1Department of Technological Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia 2Rosenberg-Slovakia s.r.o., Kováčska 38, 044 25 Medzev, Slovakia *Author to whom correspondence should be addressed. Metals 2023, 13(2), 295; https://doi.org/10.3390/met13020295 Received:

Read More

Figure 1. High pressure die-casting [1].

An Industrial Perspective on Magnesium Alloy Wheels: A Process and Material Design

An Industrial Perspective on Magnesium Alloy Wheels: A Process and Material Design Miaomiao Wang1,21China Copper Institute of Engineering and Technology, Beijing, China.2Kunming Metallurgical Research Institute Co., Ltd. Beijing Branch, Beijing, China.DOI: 10.4236/msa.2023.141002PDFHTML XML18 Downloads   134 Views Abstract Light weights wheels improve vehicle performance with respect to road handling, cornering as well providing fuel economy and reduced greenhouse gas emissions. Aluminum

Read More

Figure 9- Left: Schematics of a conventional HPDC cold chamber machine [14]; Right: Typical layout of a component produced by a cold chamber machine [15].

High Pressure Die Casting of Zamak Alloys

Steven Richard Pires de OliveiraDissertação de MestradoOrientador na FEUP: Prof. Doutor Rui Jorge de Lemos NetoOrientador no INEGI: Doutora Inês Vieira de Oliveira Abstract The high pressure die casting process has undergone major advances in recent years, due to its increasing use in the automotive sector. Although aluminum alloys are the most widely used, the

Read More

Al Alloys and Manufacturing Processes for Lightweight Applications in Electric Vehicles

Al Alloys and Manufacturing Processes for Lightweight Applications in Electric Vehicles

Abstract. Due to increasing environmental concerns, battery-powered electric vehicles (BEV) have gained popularity in the automotive for the past few years. An induction motor is an essential component of the propulsion system in integrated BEVs working on different operating conditions [1]. Since a rotor of the induction motor is configured with an electrical sheet, a

Read More

Fig. 3. Axisymmetric FE model of the solid, containing an elliptic pore with applied boundary conditions and inner pore pressure.

Conditions for blister formation during thermal cycles of Al–Si–Cu–Fe alloys for high pressure die-casting

OksanaOzhoga-MaslovskajaElisabettaGariboldiJannis NicolasLemkeShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.matdes.2015.12.003Get rights and content Highlights • Critical conditions for blister formation of Al–9Si–3Cu–Fe alloy are identified via a FE model.• Blister formation is modeled for wide range of temperatures, pore pressure, shape, location, and size.• Strain field shows blister formation related to strain localization, depending of pore geometry.• Lamina-shaped discontinuities

Read More