Tag Archives: Al-Si alloy

Figure 3. Casting of SB 55 variant with gating system.

Influence of HPDC Process Parameters on the Microstructure of EC Electromotor Housing

Influence of HPDC Process Parameters on the Microstructure of EC Electromotor Housing Marek Brůna 1, Martin Medňanský 1,*, Marek Matejka 1 and Radka Podprocká 2 1Department of Technological Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia 2Rosenberg-Slovakia s.r.o., Kováčska 38, 044 25 Medzev, Slovakia *Author to whom correspondence should be addressed. Metals 2023, 13(2), 295; https://doi.org/10.3390/met13020295 Received:

Read More

Figure 10.2. Salt core produced in high temperature and long time

Development of Salt Core Use as an Alternative in Aluminum Alloy Castings.

Tülay Hançerlioğlu 1*1 R&D Department Nemak İzmir Döküm San.A.Ş. tulay.hancerlioglu@nemak.com Orcid: 0000-0003-2373-4405Received: 6 December 2021Accepted: 1 June 2022DOI: 10.18466/cbayarfbe.1033177 Abstract For creating complex geometric shapes in the cast part, salt was used to produce core instead of sandwhich is thermo-chemical or chemical process using resin as a binder. In salt core casting, the efficiencywill be

Read More

Fig. 2. Comparison of strengths of salt cores squeezed and shot from different salt kinds (mean value of 6 cores; fraction 0.063 – 1.0 mm; A = squeezed cores (104 MPa); B = shot ones (binder Na – water glass 7.5 – 8.0 bars)

Lost Cores for High-Pressure Die Casting

. Jelínek, E. Adámková*Department of Metallurgy and Foundry Engineering, VŠB-Technical University of Ostrava, listopadu 2172/15, 708 33 Ostrava – Poruba, Czech Republic*Corresponding author. E-mail address: eliska.adamkova@vsb.czReceived 04.03.2014; accepted in revised form 30.03.2014 Abstract Development of salt cores prepared by high-pressure squeezing and shooting with inorganic binders has shown a high potential of the given technology

Read More

Figure 15. R-HPDC automobile shock absorber part.

R-HPDC Process with Forced Convection Mixing Device for Automotive Part of A380 Aluminum Alloy

by Bing Zhou,Yonglin Kang *,Mingfan Qi,Huanhuan Zhang andGuoming ZhuSchool of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China*Author to whom correspondence should be addressed.Materials2014, 7(4), 3084-3105; https://doi.org/10.3390/ma7043084Received: 24 March 2014 / Revised: 4 April 2014 / Accepted: 4 April 2014 / Published: 15 April 2014(This article belongs to the Special Issue Light Alloys and Their Applications)

Read More

Fig. 2. Schematic of the sampling position of the connecting rod (A = microstructure observation and hardness test samples; B = tensile test sample).

Mechanical properties and microstructures of a modified Al–Si–Cu alloy prepared by thixoforming process for automotive connecting rods

SazianaSamat, Mohd Zaidi, OmarAmir Hossein Baghdadi, Intan Fadhlina Mohamed, Ahmad Muhammad AzizDepartment of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Malaysia Abstract The thixoforming process with feedstock preparation yields a fine microstructure and enhanced mechanical properties relative to other traditional casting processes. However, the thixoforming process

Read More

Die casting is mostly used because many parts need to be manufactured in a short amount of time (hundreds to thousands per day) with high accuracy. Parts like valve covers, wheels, transmission housings, engine block, wheel spacer, carburetor, impellers and fan clutch, alternator housing, airbag gas generator housing, etc. are all modes through the aluminum die casting method. Automobile parts require uniformity and high surface finish which can be accomplished by using casting methods that work in a controlled environment- pressure dies casting. Die casting was originally developed specifically for automotive applications [28]. The idea is to produce parts that are light, easy to handle, and cheap. Thus, die casting is widely applied to zinc and aluminum which are lighter than cast iron. Figure 2 shows the aluminum die-cast parts of a car. PEGASUS has been supplying quality aluminum die-cast auto parts to the automobile industry with our stable production system since we started this business in 2007 [27]. At present, we are supplying 60 kinds of die-cast products with our unique mold design and casting technology in addition to the processing technology we have been cultivating in the industrial sewing machine industry [29]. Aluminum or Al-Si alloys are used for Die casting. During this process, molten metal is injected at high pressure into a die (made of metal) which is a permanent mold comprising of two parts of the desired shape attached [30].

A brief review of the technology in piston machining to goal the product localization in Vietnam

This introduction paper is based on the paper “A brief review of the technology in piston machining to goal the product localization in Vietnam” published by “[Journal/academic society of publication not explicitly stated in the paper]”. 1. Overview: 2. Abstract: The recent rapid growth of the Vietnamese automobile market is convincing proof that the Government

Read More

Fig. 1. Aluminium Die Cast Parts.

Automobile Parts Casting-Methods and Materials Used: A Review

Summary of “Automobile Parts Casting-Methods and Materials Used: A Review” This material is based on the paper “Automobile Parts Casting-Methods and Materials Used: A Review” by Madhav Goenka, Chico Nihal, Rahul Ramanathan, Pratyaksh Gupta, Aman Parashar, and Joel Jb.Paper Source: https://doi.org/10.1016/j.matpr.2020.03.518 1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology

Read More

Fig. 2. Photographs of the four different parts formed by FCS Rheo-HPDC technology

A forced convection stirring process for Rheo-HPDC aluminum and magnesium alloys

Mingfan Qi a,∗, Yonglin Kanga, Bing Zhoua, Wanneng Liaoa, Guoming Zhua, Yangde Li b,Weirong Li ba School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China b Dongguan EONTEC Corporation, Ltd., Dongguan 523662, China Abstract A simplified process, namely forced convection stirring (FCS), was proposed to prepare four differentsemisolid slurries

Read More

Fig. 2. Baseline and Optimized plunger speed profiles.

On the probabilistic nature of high-pressure die casting

EwanLordanaYijieZhangaKunDouabAlainJacotacChrysoulaTzileroglouaPaulBlakedZhongyunFanaaBrunel Centre for Advanced Solidification Technology, Brunel University London, Uxbridge, Middlesex, UB83PH, UKbSchool of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, ChinacCalcom ESI SA, SwitzerlanddJaguar Land Rover Ltd, Coventry, CV3 4LF, UK Abstract This article unmasks the probabilistic nature of high-pressure die casting; specifically, the cause of scatter in the tensile ductility of

Read More

Fig. 2. Comparison of strengths of salt cores squeezed and shot from different salt kinds (mean value of 6 cores; fraction 0.063 – 1.0 mm; A = squeezed cores (104 MPa); B = shot ones (binder Na – water glass 7.5 – 8.0 bars)

Lost Cores for High-Pressure Die Casting

P. Jelínek, E. Adámková*Department of Metallurgy and Foundry Engineering, VŠB-Technical University of Ostrava, listopadu 2172/15, 708 33 Ostrava – Poruba, Czech Republic*Corresponding author. E-mail address: eliska.adamkova@vsb.czReceived 04.03.2014; accepted in revised form 30.03.2014 Abstract Development of salt cores prepared by high-pressure squeezing and shooting with inorganic binders has shown a high potential of the given technology

Read More