Minh Quang Chau†, Danh Chan Nguyen‡*, Dinh Tuyen Nguyen‡, Viet Duc Bui‡†*† Faculty of Mechanical Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam‡ Institute of Mechanical Engineering, Ho Chi Minh City University of Transport, Ho Chi Minh city, Vietnam‡† Institute of Engineering, Ho Chi Minh city University of Technology (HUTECH),
Authors Surkhail Tariq 1 Adnan Tariq 2 Manzar Masud 3 Zabdur Rehman 4 1 Department of Mechanical Engineering, Wah Engineering College, University of Wah, Wah Cantt 47040, Pakistan 2 Department of Mechanical Engineering, Wah Engineering College, University of Wah, Wah Cantt 47040,Pakistan 3 Department of Mechanical Engineering, Capital University of Science and Technology, Islamabad 44000, Pakistan 4 Department of Mechanical Engineering, Air University
Joshua Thomas JamesonBurda, Elizabeth A.Moorea, HeshamEzzatbRandolphKirchainaRichardRothaa Materials Systems Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Ave, E19-695, Cambridge, MA 02139, United Statesb WorldAuto Steel/American Iron and Steel Institute, 2000 Town Center, Suite 320, Southfield, MI 48075, United States Highlights Global demand for and adoption of battery electric vehicles is on the rise. To achieve increased
Madhav Goenkaa, Chico Nihala, Rahul Ramanathana, Pratyaksh Guptaa, Aman Parashara, Joel Jb*aB.Tech Mechanical Engineering,Vellore Institute of Technology, Katpadi,Vellore, TamilNadu, India b*Assistant Professor (senior),Vellore Institute of Technology, Katpadi,Vellore, TamilNadu, India Abstract Automobiles are becoming more and more sophisticated with every passing year. Manufacturers have been trying their best to bring down the kerb weight of their
by Sebastian Kohlstädt 1,2,Michael Vynnycky 1,3,* andStephan Goeke 41Division of Processes, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, 100 44 Stockholm, Sweden2Volkswagen AG—Division of Components Manufacturing, Dr. Rudolf-Leiding-Platz 1, 34225 Baunatal, Germany3Department of Mathematics and Statistics, University of Limerick, Limerick V94 T9PX, Ireland4Institute of Mechanics, Kassel University, Mönchebergstr. 7, 34125 Kassel, Germany*Author to whom
Sang-SooShina, Sang-KeeLeeb, Dae-KyeomKimc, BinLeecaR&D Center, Oh-Sung Tech Co. Ltd., Siheung, 15112, Republic of KoreabDepartment of Advanced Material Application, Daegu Campus of Korea Polytecnic, Daegu, 41765, Republic of KoreacKorea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon, 21999, Republic of Korea Abstract The cooling efficiency of aluminum die-casting molds is critical to prevent soldering,
Mingfan Qi a,∗, Yonglin Kanga, Bing Zhoua, Wanneng Liaoa, Guoming Zhua, Yangde Li b,Weirong Li ba School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China b Dongguan EONTEC Corporation, Ltd., Dongguan 523662, China Abstract A simplified process, namely forced convection stirring (FCS), was proposed to prepare four differentsemisolid slurries
Yung-Kuang Yang and Chorng-Jyh Tzeng Keywords: ANOVA, AZ91D, Die-casting, Taguchi method, Stress–strain. Introduction Magnesium and its alloys are becoming increasingly important as structural materials for applications in which weight reduction is critical, because of their low density and high stiffness-to-weight ratio. Popular applications include automotive, industrial, materials-handling, and aerospace equipment such as automotive pulleys, cog-tooth
Bok-Hyun Kang*, Ki-Young KimKorea University of Technology and Education 코어드 와이어 피딩에 의한 Cu 용탕에의 합금 첨가 시 효율 평가 Abstract To add alloying elements into a pure copper melt, the wire-feeding efficiency of cored (alloy containing) wire was evaluated using a commercial, computational fluid-dynamics program. The model design was based on an industrial-scale production