Tag Archives: Microstructure

Fig. 1. Casting “body”

Influence of Sand Fluidization on Structure and Properties of Aluminum Lost Foam Casting

Beyond the Die: How Advanced Cooling in Lost Foam Casting Unlocks Superior Aluminum Casting Properties This technical summary is based on the academic paper “Influence of Sand Fluidization on Structure and Properties of Aluminum Lost Foam Casting” by P. Kaliuzhnyi, published in ARCHIVES of FOUNDRY ENGINEERING (2020). It has been analyzed and summarized for technical

Read More

Fig. 4. Segregation of casting obtained: a) without cooling;b) with water mist cooling system method; 1 – boundary layer; 2 – cast core

THE EFFECT OF WATER MIST COOLING OF CASTING DIE ON THE SOLIDIFICATION, MICROSTRUCTURE AND PROPERTIES OF AlSi20 ALLOY

Unlocking Superior Hardness in AlSi20 Castings: A Deep Dive into Water Mist Die Cooling This technical summary is based on the academic paper “THE EFFECT OF WATER MIST COOLING OF CASTING DIE ON THE SOLIDIFICATION, MICROSTRUCTURE AND PROPERTIES OF AlSi20 ALLOY” by R. Władysiak, A. Kozuń, and T. Pacyniak, published in Arch. Metall. Mater. (2017).

Read More

Fig. 1 Schematic of low-pressure die cast with LS for A356 alloy wheels

Microstructure and Properties of A356 Alloy Wheels Fabricated by Low-Pressure Die Casting with Local Squeeze

This introduction paper is based on the paper “Microstructure and Properties of A356 Alloy Wheels Fabricated by Low-Pressure Die Casting with Local Squeeze” published by “ASM International”. 1. Overview: 2. Abstract: The low-pressure die-casting process (LPDC) is widely utilized for manufacturing aluminum alloy automotive wheels, with A356 being a common material choice due to its

Read More

Figure 1. Used molds and presses

Impact of Aspect Ratio on the Mechanical Properties of Squeeze-Cast Aluminum Alloys

Optimizing AA6061 Performance: How Component Geometry Dictates Squeeze Casting Process Success This technical summary is based on the academic paper “IMPACT ASPECT RATIO ON MECHANICAL PROPERTIES OF ALUMINUM ALLOY PRODUCED BY SQUEEZE CASTING PROCESS” by S.S. Mutar and N.S. Abtan, published in the International Journal on “Technical and Physical Problems of Engineering” (IJTPE) (2023). Keywords

Read More

Fig.2 - Nearest neighbour distances a) averages and error, b) distribution of nearest neighbour distances.

Comparison between high-pressure die-cast and rheo-cast aluminium-SiCp MMC; wear and friction behaviour

Rethinking Wear Resistance: Why Softer Aluminium MMCs Can Outperform Harder Ones in HPDC Applications This technical summary is based on the academic paper “Comparison between high-pressure die-cast and rheo-cast aluminium-SiCp MMC; wear and friction behaviour” by A. E. W. Jarfors, R. Ghasemi, S. Awe, C. K. Jammula, published in La Metallurgia Italiana (2021). It has

Read More

Figure 2: Gray cast iron.

Investigating the Microscopic Structure of Cast Iron and Its Application in Industry

From Lab to Production Line: How Cast Iron Microstructure Analysis Boosts Component Performance This technical summary is based on the academic paper “Investigating the Microscopic Structure of Cast Iron and Its Application in Industry” by Milad Karimi, published in Journal of Engineering in Industrial Research (2023). Keywords Executive Summary The Challenge: Why This Research Matters

Read More

Figure.1. Optical micrographs of the as cast samples (a) Die casting specimen, (b) Squeeze Casting at pressure of 50MPa, (c) Squeeze Casting at pressure of 75MPa, (d) Squeeze Casting at pressure of 100MPa

A Comparative Work on Die Casting and Squeeze Casting Techniques of A319 Cast Aluminium Alloy

Squeeze Casting vs. Die Casting: A Data-Driven Comparison for A319 Aluminum Alloy Components This technical summary is based on the academic paper “A Comparative Work on Die Casting and Squeeze Casting Techniques of A319 Cast Aluminium Alloy” by M. Naveen Kumar, V. Mohanavel, C. Jayasekar, N. Dineshbabu and S. Udishkumar, published in the 11th International

Read More

Fig. 9. Freezing time [s] of materials CP-Al, 2124, 2218, and 6063 prepared at 0, 25, 75, 100, 125 and 150 MPa

EFFECT OF LIQUID FORGING PRESSURE ON SOLUBILITY AND FREEZING COEFFICIENTS OF CAST ALUMINUM 2124, 2218 AND 6063 ALLOYS

How Liquid Forging Pressure Unlocks Superior Hardness and Reduces Porosity in Aluminum Alloys This technical summary is based on the academic paper “EFFECT OF LIQUID FORGING PRESSURE ON SOLUBILITY AND FREEZING COEFFICIENTS OF CAST ALUMINUM 2124, 2218 AND 6063 ALLOYS” by Vineet Tirth and Amir Arabi, published in Archives of Metallurgy and Materials (2020). It

Read More

Fig. 2 Macrostructure of AlSi10.5Cu1.2Mn0.8Ni1.2Pb0.5 alloy a) sand mold b) metal mold

The Effect of Casting Mold Material on Microstructure of Al-Si Alloys

Paper Title Metal vs. Sand Molds: How Cooling Rate Dictates Al-Si Alloy Microstructure and Performance This technical summary is based on the academic paper “The Effect of Casting Mold Material on Microstructure of Al-Si Alloys” by Tomas Vlach and Jaromir Cais, published in MANUFACTURING TECHNOLOGY (2022). It has been analyzed and summarized for technical experts

Read More

Fig.1 Thermal analysis of the temperature profile obtained by the inverse heat transfer model

MICROSTRUCTURE SIMULATION OF HIGH PRESSURE DIE CAST MAGNESIUM ALLOY BASED ON MODIFIED CA METHOD

This introduction paper is based on the paper “MICROSTRUCTURE SIMULATION OF HIGH PRESSURE DIE CAST MAGNESIUM ALLOY BASED ON MODIFIED CA METHOD” published by “ACTA METALLURGICA SINICA”. 1. Overview: 2. Abstract: As the lightest structural material, magnesium alloy has been widely used in the automotive, aerospace and electronic industries. High pressure die casting (HPDC) process

Read More