Tag Archives: Magnesium alloys

Figure 8 Appearance of fastened AE44 plates pretreated with fluorozirconate and a metallic-looking epoxy-based powder coat.

Corrosion Protection of Joining Areas in Magnesium Die-Cast and Sheet Products

This article introduces the paper “Corrosion Protection of Joining Areas in Magnesium Die-Cast and Sheet Products.” 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material is Wenyue Zheng, C. Derushie, J. Lo

Read More

Figure 18 Comprehensive opportunities for polymers and polymer composites with associated manufacturing processes for lightweighting in vehicles. Abbreviations: BMC, bulk molding compound; HP RTM, high-pressure resin transfer molding; LFT, long-fiber thermoplastic; SMC, sheet molding compound. Adapted from Reference 105.

Materials for Automotive Lightweighting

This article introduces the paper “Materials for Automotive Lightweighting”. 1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology: 5. Main Research Findings: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material is based on the paper by [Alan Taub et al.] titled: [Materials for Automotive

Read More

Fig 1. Microstructure alloy MCMgAl6Zn1: a) without heat treatment – 0, b) after heat treatment – 2, c) after heat treatment – 3, d) after heat treatment – 4

Heat Treatment Impact on the Structure of Die-Cast Magnesium Alloys

This article introduces the paper “Heat treatment impact on the structure of die-cast magnesium alloys” published in the Journal of Achievements in Materials and Manufacturing Engineering in 2007. 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology: 5. Major Research Findings: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8.

Read More

Fig. 4. Z-shaped section of the cylinder block

Materials in Automotive Engineering

This article introduces the paper “Materials in Automotive Engineering”. 1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology 5. Key Research Findings: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material is a summary based on the above paper, and unauthorized use for commercial purposes

Read More

Fig. 4 Operations for forging control arm a bending, b flattening, and c forging. (Color figure online)

Magnesium 2021: Proceedings of the 12th International Conference on Magnesium Alloys and their Applications

This article introduces the paper “Magnesium 2021: Proceedings of the 12th International Conference on Magnesium Alloys and their Applications”. 1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology: 5. Main Research Findings: Fig. 1 Schematic diagram of thermic reduction equipment. (Color figure online) 6. Conclusion and Discussion: 7. Future Follow-up

Read More

Fig.1 3D model of die casting

Influence of Different Rapid Injection Velocity on Forming Quality of Magnesium Alloy Vacuum Die Casting

This article introduces the paper “Influence of Different Rapid Injection Velocity on Forming Quality of Magnesium Alloy Vacuum Die Casting”. 1. Overview: 2. Research Background: This research investigates the impact of rapid injection speed on the quality of magnesium alloy vacuum die castings using AZ91D magnesium alloy. Magnesium alloys are widely used in aerospace, 3C

Read More

Fig. 14. Pratt & Whitney F119 auxiliary casing in ELEKTRON WE43 alloy [37].

Magnesium casting technology for structural applications

This article introduces the paper “Magnesium casting technology for structural applications”. Overview: – Core Objective of the Research: To provide a comprehensive overview of magnesium alloy melting and casting processes, examine the historical development, current status, and potential applications of structural magnesium castings, primarily focusing on the automotive industry, and discuss associated technological challenges. The increasing

Read More

Development and Validation using Casting Simulation of a Multi-point Remote Monitoring System for High-Pressure Die-Casting (HPDC) Mold Cavity

Development and Validation using Casting Simulation of a Multi-point Remote Monitoring System for High-Pressure Die-Casting (HPDC) Mold Cavity

Abstract This research presents the design and implementation process of a remote monitoring system for temperature and force-induced pressure measurements in the mold cavity of high-pressure die casting (HPDC). A K-type thermocouple sensor was chosen to gauge the aggressive environment inside the mold cavity. An ejector pin was adapted for the installation of this sensor,

Read More

Design of Non-Heat Treatable High Pressure Die Casting Al Alloys: A Review

Design of Non-Heat Treatable High Pressure Die Casting Al Alloys: A Review

Hongyi Zhu, Cunjuan Xia, Huawei Zhang, Dechao Zhao, Mingliang Wang & Haowei Wang Abstract In recent years, Non-Heat Treatable High Pressure Die Casting Al alloys (NHT-HPDC Al alloys) have been proposed and developed for integrated die casting in the automotive industry. These alloys exhibit excellent castability and can achieve sufficient mechanical properties without the need for heat treatment. Despite their industrial

Read More

Gas inclusion cut open by drilling, on the threaded profile.

Modelling the Impregnation of a Pressure-Tight Casting

Abstract Pressure tightness is important for many die-cast aluminium castings, but the interconnected porosity formed in the aluminium alloy high-pressure die castings (HPDC) can form a network connecting several surfaces of the casting, especially as a result of machining after casting. The resulting potential leakage path can be imagined as a series of discontinuities varying in

Read More