by 1,*, 1, 1, 2, 1, 1 and 1 1DIMI, Department of Industrial and Mechanical Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy 2Co.Stamp. s.r.l. Via Verdi 6, 23844 Sirone (LC), Italy*Author to whom correspondence should be addressed. Metals2019, 9(2), 217;Received: 14 December 2018 / Revised: 7 February 2019 / Accepted: 8 February 2019 / Published: 12 February 2019 Abstract Weight reduction
1. Overview: 2. Research Background: In metalcasting, cores are essential components utilized to create internal geometries and voids within cast products. The selection and performance of cores are significantly influenced by the casting technique employed, ranging from gravity casting to high pressure die casting. As component designs become increasingly complex and environmental regulations more stringent,
N. Rathinam ⇑, R. Dhinakaran, E. SharathDepartment of Mechanical Engineering, Pondicherry Engineering College, Pillaichavady, Puducherry, 605014, India Abstract Products manufactured from every manufacturing process exhibit some defects. To supply quality products to the customer these defects must be reduced. The motivation for this work is to reduce defects in end products reaching customers, thereby increasing
Suraj Marathea Carmo QuadrosbaDepartment of Mechanical, Don Bosco College of Engineering, Fathorda, Madgoa Goa 403602, IndiabDepartment of Mechanical, Assam Don Bosco University, Tapesia Gardens, Kamarkuchi Sonapu, Assam 782402, India Available online 11 April 2021. Abstract This paper identifies the approximate height of thermal hot spots in casting components manufactured by high pressure die casting. Certain assumptions
by Bing Zhou,Yonglin Kang *,Mingfan Qi,Huanhuan Zhang andGuoming ZhuSchool of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China*Author to whom correspondence should be addressed.Materials2014, 7(4), 3084-3105; https://doi.org/10.3390/ma7043084Received: 24 March 2014 / Revised: 4 April 2014 / Accepted: 4 April 2014 / Published: 15 April 2014(This article belongs to the Special Issue Light Alloys and Their Applications)
Suraj R. Marathe Assam Don Bosco University, Carmo E. Quadros Assam Don Bosco UniversityDate Written: February 13, 2021 Abstract A numerical simulation approach is proposed to predict the optimal parameter setting during high pressure die casting. The contribution from the optimal parameters, the temperature, showed more influence on the casting quality than the other parameters.
Minh Quang Chau†, Danh Chan Nguyen‡*, Dinh Tuyen Nguyen‡, Viet Duc Bui‡†*† Faculty of Mechanical Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam‡ Institute of Mechanical Engineering, Ho Chi Minh City University of Transport, Ho Chi Minh city, Vietnam‡† Institute of Engineering, Ho Chi Minh city University of Technology (HUTECH),
Authors Surkhail Tariq 1 Adnan Tariq 2 Manzar Masud 3 Zabdur Rehman 4 1 Department of Mechanical Engineering, Wah Engineering College, University of Wah, Wah Cantt 47040, Pakistan 2 Department of Mechanical Engineering, Wah Engineering College, University of Wah, Wah Cantt 47040,Pakistan 3 Department of Mechanical Engineering, Capital University of Science and Technology, Islamabad 44000, Pakistan 4 Department of Mechanical Engineering, Air University
AndreasSchillingaKaiSalscheideraHenrikRuschebHrvojeJasakbMartinFehlbieraSebastianKohlstädtcaUniversity of Kassel, Department of Foundry Technology, Kurt-Wolters-Str. 3, 34125 Kassel, GermanybWikki GmbH, Ziegelbergsweg 68, 38855 Wernigerode, GermanycVolkswagen AG, Division of components manufacturing – Business Unit Casting Dr. Rudolf-Leiding-Platz 1, 34225 Baunatal, Germany Abstract In this work, a toolchain for the solidification and the shrinkage of cast salt cores used in high-pressure die casting is