Hyuk-JaeKwonaHong-KyuKwonbaDepartment of Civil Engineering, Cheongju University, Cheongju-city, Choongnam, South KoreabDepartment of Industrial & Management Engineering, Namseoul University, Cheonan-city, Choongnam, South Korea Abstract A most important progress in civilization was the introduction of mass production. HPDC molds are one of main technologies for mass production. Due to the high velocity of the liquid metal, aluminum die-casting
settingsOpen AccessReview Current Trends in Automotive Lightweighting Strategies and Materials by Frank CzerwinskiCanmetMATERIALS, Natural Resources Canada, Hamilton, ON L8P 0A5, CanadaAcademic Editor: Carola Esposito CorcioneMaterials2021, 14(21), 6631; https://doi.org/10.3390/ma14216631Received: 17 September 2021 / Revised: 26 October 2021 / Accepted: 29 October 2021 / Published: 3 November 2021(This article belongs to the Special Issue Lightweight Structural Materials for Automotive and Aerospace) Abstract The automotive lightweighting trends, being
Myeong Jin Koa, Sung-Ho Leea, Soon Sub Parka* ABSTRACT In this study, a 2.2 kW super-premium (IE4) class 4-pole three-phase induction motor was designed and developed. We compared this prototype motor with the industrial induction motors sold by leading international companies. We designed and fabricated a stator, an Al rotor, housing, bearing front and rear
Qian Zhang, Huijuan Liu, Member, IEEE, Zhenyang Zhang and Tengfei Song Abstract According to the demands of the small commercial electric vehicle (EV) traction driving system, an 18kW inverter-driven induction motor (IM) with a die-casting copper squirrel cage rotor for traction drive was designed and evaluated. The 2D finite element model of the designed IM
Kohlstädt, Sebastian KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering. Vynnycky, Michael KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.ORCID iD: 0000-0002-8318-1251 Neubauer, Alexander Volkswagen AG, Div Components Mfg, Business Unit Casting, Dr Rudolf Leiding Pl 1, D-34225 Baunatal, Germany.. Gebauer-Teichmann, Andreas Volkswagen AG, Div Components Mfg, Business
This paper summary is based on the article [CORE VIABILITY SIMULATION FOR SALT CORE TECHNOLOGY IN HIGH-PRESSURE DIE CASTING] presented at the [International Journal of Metalcasting/Summer 2013] Abstract In high-pressure die casting (HPDC) undercuts can only be fabricated by using complex high-maintenance sliders. Until now, this technology has not been used for large-scale and cost-sensitive
ABSTRACT This thesis describes, in a manufacturing context, the development of new waterbased core technology for light alloys. Cores used for steel casting are made from fused silica and are removed using hot sodium hydroxide under refluxing (pressurising hot acids). However, aluminium and other light alloys are attacked by sodium hydroxide. Currently there is no
IyasKhaderab AlexanderRenzb AndreasKailerb DanielHaascaDepartment of Industrial Engineering, German Jordanian University, P.O. Box 35247, 11180 Amman, JordanbFraunhofer Institute for Mechanics of Materials IWM, Woehlerstr. 11, 79108 Freiburg, GermanycFCT Ingenieurkeramik GmbH, Gewerbepark 11, 96528 Frankenblick, Germany Abstract Due to the high melting temperature of copper and copper alloys, conventional die-steel components used in pressure die casting these
1. Overview: 2. Research Background: In metalcasting, cores are essential components utilized to create internal geometries and voids within cast products. The selection and performance of cores are significantly influenced by the casting technique employed, ranging from gravity casting to high pressure die casting. As component designs become increasingly complex and environmental regulations more stringent,
Michail Papanikolaou, Prateek SaxenaSustainable Manufacturing Systems Centre, Manufacturing Theme, Cranfield University, Cranfield, United Kingdom Available online 1 April 2021. Abstract Since the 1980s, the evolution of the computing power as well as the advances in numerical modeling techniques have allowed for the development of accurate casting simulation solutions. Although casting processes involve a series of