Tag Archives: aluminum alloy

Fig. 1. Structure of die-casting motor

Design of Automated Production Line and Optimization of Production Scheduling for Die Casting of New Energy Vehicle Motor Shell

Beyond the Machine: How Smart Scheduling Slashes Costs in Die Casting for NEV Motor Shells This technical summary is based on the academic paper “Design of Automated Production Line and Optimization of Production Scheduling for Die Casting of New Energy Vehicle Motor Shell” by Yan Lu, Da-Lei Zhang, and Hao-Sheng Lu, published in Journal of

Read More

Figure 1:The image of epithelial cells recovered from the endometrium via cytobrush.

Use of Aluminum Alloys in Automotive Industry

Driving the Future: How Automotive Aluminum Alloys are Revolutionizing Vehicle Weight, Fuel Economy, and Performance This technical summary is based on the academic paper “Use of Aluminum Alloys in Automotive Industry” by Dr. Fatmagul Tolun, published in the International Mediterranean Natural Sciences, Health Sciences and Engineering Congress (MENSEC) proceedings (2019). It has been analyzed and

Read More

Figure 2: a) Shot profile with four different plunger speeds and b) volume fraction picture of the alloy and the empty space in the shot sleeve

SIMULATIONS OF THE SHRINKAGE POROSITY OF Al-Si-Cu AUTOMOTIVE COMPONENTS

From Simulation to Perfection: Slashing Cycle Time and Defects in Automotive HPDC This technical summary is based on the academic paper “SIMULATIONS OF THE SHRINKAGE POROSITY OF Al-Si-Cu AUTOMOTIVE COMPONENTS” by Lejla Lavtar¹, Mitja Petrič², Jožef Medved², Boštjan Taljat¹, Primož Mrvar², published in Materiali in tehnologije / Materials and technology (2012). It has been analyzed

Read More

Figure 1. Schematic diagram of a typical HPDC process.

Development of High Performance Copper Alloy Chill Vent for High Pressure Die Casting

Boost HPDC Efficiency by 158%: The Power of High Performance Copper Alloy Chill Vents This technical summary is based on the academic paper “Development of High Performance Copper Alloy Chill Vent for High Pressure Die Casting” by Duoc T Phan, Syed H Masood, Syed H Riza, and Harsh Modi, published in the International Journal of

Read More

Fig.4 - Microstructure and α1- AlSiMnFe and α2- AlSiMnFe intermetallics in the F (a) and T6 (b) samples.

Unlocking High-Performance HPDC with 90% Recycled Aluminum: A Technical Breakdown of T6 Heat Treatment Effects

This technical summary is based on the academic paper “Comparison of As Cast and T6 heat treatment on high end-of-life-scrap secondary aluminium alloy for High-Pressure Die Casting automotive structural components” by A. Bongiovanni, A. Castellero, M. Da Silva, published in La Metallurgia Italiana (Aprile 2024). It has been analyzed and summarized for technical experts by

Read More

Fig. 4. Microstructure of secondary AlSi9Cu3 cast alloy (1 - Į-phase, 2 - eutectic, 3 - Fe-rich phase, 4 - Cu-rich phase) etch. Dix-Keller

Under the Microscope: Optimizing Recycled Aluminum for the Automotive Industry

In the relentless drive for fuel efficiency and sustainability, the automotive industry has increasingly turned to lightweight materials. Aluminum alloys are at the forefront of this revolution, offering an excellent strength-to-weight ratio. But what makes this even more compelling is the ability to use recycled aluminum, which requires only a fraction of the energy needed

Read More

Fig. 4 - Porosity identify by a) X-ray on components from the first experimental activity, b) FEM simulations, c) X-ray on components from the final experimental activity (optimization of process parameters)

Redefining Automotive Safety: A 47% Lighter HPDC Aluminum Suspension Cross Beam

This technical summary is based on the academic paper “Numerical and experimental analysis of a high pressure die casting Aluminum suspension cross beam for light commercial vehicles” by S. Cecchel, D. Ferrario, published in La Metallurgia Italiana (2016). It has been analyzed and summarized for technical experts by CASTMAN with the assistance of AI. Keywords

Read More

Fig. 1 e Schematic of the CPC machine and process procedure (a) Structure of the CPC machine (b) Major steps of the CPC process: (i) pressure chamber closed; (ii) furnace and pressure chamber are pressurized; (iii) furnace pressure is further increased slowly; (iv) chamber pressure is quickly released; (v) furnace pressure is released;(vi) chamber and die are opened; and (vii) the cast part is ejected.

A study of an industrial counter pressure casting process for automotive parts

1. Overview: 2. Abstract: Counter pressure casting (CPC) is emerging in the automotive manufacturing industry as an alternative to low-pressure die casting (LPDC) due to its reported superior capabilities in aluminum parts production. This study presents the first comprehensive investigation of how CPC’s characteristic feature (applied chamber pressure) influences the fluid flow and heat transport

Read More

Fig. 1. Tensile properties of the four alloys made from cylindrical tensile test bars examined in as-cast, T4 and T6 tempers. (a), ADC3, (b), ADC10#1, (c) ADC10#2, (d) ADC12.

Unlocking Hidden Strength: How Novel Heat Treatments Transform HPDC Aluminum Alloys

This technical summary is based on the academic paper “The Effect of Heat Treatment on Tensile, Fatigue and Fracture Resistance of ADC3, ADC10, and ADC12 Alloys” published by Roger N. Lumley, David Viano, John R. Griffiths, and Cameron J. Davidson in the Proceedings of the 12th International Conference on Aluminium Alloys (2010). It was analyzed

Read More

Fig. 1. Geometry of the diecasting where the investigated impact bar is indicated by the arrow.

The Tipping Point: Finding the Chromium Sweet Spot for AlSi9Cu3(Fe) Alloy Toughness

This technical summary is based on the academic paper “The Influence of Cr content on the Fe-rich phase Formation and Impact toughness of a Die-cast AlSi9Cu3(Fe) alloy” published by G. Timelli, S. Ferraro, A. Fabrizi, S. Capuzzi, F. Bonollo, L. Capra, and G.F. Capra in the proceedings of the World Foundry Congress (2014). It was

Read More