Tag Archives: aluminum alloy

Gambar 2.3 Piston

DESIGN OF GATING SYSTEM ON PISTON OF MOBIL SINJAI WITH GRAVITY DIE CASTING METHOD

Eliminating Shrinkage Defects in Piston Casting: A Gating System Design Breakthrough This technical summary is based on the academic paper “DESIGN OF GATING SYSTEM ON PISTON OF MOBIL SINJAI WITH GRAVITY DIE CASTING METHOD” by Rizki Yustisiabellah, published by Institut Teknologi Sepuluh Nopember (2015). Keywords Executive Summary The Challenge: Why This Research Matters for HPDC

Read More

Research on Lightweight Wheel Hub Design and Its Improvement on Vehicle Fuel Economy

Research on Lightweight Wheel Hub Design and Its Improvement on Vehicle Fuel Economy

Fuel Economy Reimagined: A Deep Dive into Advanced Lightweight Wheel Hub Manufacturing This technical summary is based on the academic paper “Research on Lightweight Wheel Hub Design and Its Improvement on Vehicle Fuel Economy” by Simin Wang, published in International Journal of Frontiers in Engineering Technology (2025). Keywords Executive Summary The Challenge: Why This Research

Read More

Fig. 3.11: Equivalent alternating stress for aluminium alloy

Effect of Die Geometry on Fatigue Analysis of Aluminium Alloy (ADC12 Aluminium A383) using Pressure Die Casting Process

The 1mm Advantage: Optimizing Coolant Channel Placement to Maximize Die Life in Aluminum HPDC This technical summary is based on the academic paper “Effect of Die Geometry on Fatigue Analysis of Aluminium Alloy (ADC12 Aluminium A383) using Pressure Die Casting Process” by Poshan Dewangan, Ved Prakash Dewangan, Sushil Kumar Maurya, and Lokesh Singh, published in

Read More

Figure 1. Defects in the workpieces revealed in the production process: a) underfilling, b) sticking, c) cracks, d) breakouts, e) discoloration, f) macroporosity.

DEFECT ANALYSIS OF EN AC-435000 ALLOY DIE CASTINGS USING THE PARETO-LORENTZ DIAGRAM

Slash Scrap Rates: A Pareto-Lorenz HPDC Defect Analysis for EN AC-435000 Alloy This technical summary is based on the academic paper “DEFECT ANALYSIS OF EN AC-435000 ALLOY DIE CASTINGS USING THE PARETO-LORENTZ DIAGRAM” by Mariusz HEJNE, Jarosław PIĄTKOWSKI, and Robert WIESZAŁA, published in SCIENTIFIC PAPERS OF SILESIAN UNIVERSITY OF TECHNOLOGY ORGANIZATION AND MANAGEMENT SERIES NO.

Read More

Figure.1. Optical micrographs of the as cast samples (a) Die casting specimen, (b) Squeeze Casting at pressure of 50MPa, (c) Squeeze Casting at pressure of 75MPa, (d) Squeeze Casting at pressure of 100MPa

A Comparative Work on Die Casting and Squeeze Casting Techniques of A319 Cast Aluminium Alloy

Squeeze Casting vs. Die Casting: A Data-Driven Comparison for A319 Aluminum Alloy Components This technical summary is based on the academic paper “A Comparative Work on Die Casting and Squeeze Casting Techniques of A319 Cast Aluminium Alloy” by M. Naveen Kumar, V. Mohanavel, C. Jayasekar, N. Dineshbabu and S. Udishkumar, published in the 11th International

Read More

Fig. 9. Freezing time [s] of materials CP-Al, 2124, 2218, and 6063 prepared at 0, 25, 75, 100, 125 and 150 MPa

EFFECT OF LIQUID FORGING PRESSURE ON SOLUBILITY AND FREEZING COEFFICIENTS OF CAST ALUMINUM 2124, 2218 AND 6063 ALLOYS

How Liquid Forging Pressure Unlocks Superior Hardness and Reduces Porosity in Aluminum Alloys This technical summary is based on the academic paper “EFFECT OF LIQUID FORGING PRESSURE ON SOLUBILITY AND FREEZING COEFFICIENTS OF CAST ALUMINUM 2124, 2218 AND 6063 ALLOYS” by Vineet Tirth and Amir Arabi, published in Archives of Metallurgy and Materials (2020). It

Read More

Fig. 2 Macrostructure of AlSi10.5Cu1.2Mn0.8Ni1.2Pb0.5 alloy a) sand mold b) metal mold

The Effect of Casting Mold Material on Microstructure of Al-Si Alloys

Paper Title Metal vs. Sand Molds: How Cooling Rate Dictates Al-Si Alloy Microstructure and Performance This technical summary is based on the academic paper “The Effect of Casting Mold Material on Microstructure of Al-Si Alloys” by Tomas Vlach and Jaromir Cais, published in MANUFACTURING TECHNOLOGY (2022). It has been analyzed and summarized for technical experts

Read More

Fig.1. Cause and effect diagram (Ishikawa diagram) for casting porosity

Optimization of process parameters of High Pressure Die Casting process for ADC12 Aluminium alloy using Taguchi method

This introduction paper is based on the paper “[Optimization of process parameters of High Pressure Die Casting process for ADC12 Aluminium alloy using Taguchi method]” published by “[International Journal of Pure and Applied Mathematics]”. 1. Overview: 2. Abstract: A study has been carried out to optimize the die casting process parameters in order to achieve

Read More

Figure 6: Details for Experiment and the Assembled Mould for Volume Deficit Experiment

CALCULATION OF SHRINKAGE CHARACTERISTIC OF US 413 CAST ALUMINIUM ALLOY USING CASTING SIMULATION

Mastering Shrinkage in US 413 Aluminum Alloy: A Guide to Casting Simulation This technical summary is based on the academic paper “CALCULATION OF SHRINKAGE CHARACTERISTIC OF US 413 CAST ALUMINIUM ALLOY USING CASTING SIMULATION” by S Santhi, S B Sakri, D Hanumantha Rao and S Sundarrajan, published in International Journal of Mechanical Engineering and Robotics

Read More

Fig. 1. Photograph of the project under analysis. View: a) from the fixed half; b) from the mobile half

Effect of Cavitation Phenomenon on the Quality of High-Pressure Aluminium Alloy Castings

How Vacuum Casting Intensifies HPDC Cavitation and What to Do About It This technical summary is based on the academic paper “Effect of Cavitation Phenomenon on the Quality of High-Pressure Aluminium Alloy Castings” by Marcin Brzeziński and Jakub Wiśniowski, published in the Journal of Casting & Materials Engineering (2023). It has been analyzed and summarized

Read More