Tag Archives: 주조 기술

Figure 1. MMLV concept vehicle

Aluminum High-Pressure Vacuum Die Casting Applications for the Multi-Material Lightweight Vehicle (MMLV) Body Structure

1. Overview: 2. Research Background: This research stemmed from the Multi-Material Lightweight Vehicle (MMLV) project, a collaborative effort initiated in 2012 by Magna International, the U.S. Department of Energy, and Ford Motor Company. The societal impetus was the need for improved fuel efficiency and reduced emissions through vehicle weight reduction. The research addressed limitations of

Read More

Fig.5: (a) Hollow aluminum casting; and (b) welded engine cradle for Cadillac CTS

Advanced Casting Technologies for Lightweight Automotive Applications

1. Overview: 2. Background: Lightweighting in the automotive industry is crucial for improving fuel efficiency. Aluminum and magnesium castings have been utilized for this purpose for a considerable time, gaining significant traction since the mid-1970s. Aluminum castings offer a 30-50% mass reduction compared to steel, while magnesium castings provide a 40-60% reduction. However, existing aluminum

Read More

Fig. 1: Actual casting EP20, Fig. 2: Monthly rejection rate of EP 20

A Review on Casting Defect Minimization Through Simulation

1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology: 5. Key Research Findings: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: *This material is based on the paper by Mahipalsinh G. Jadeja, Manojkumar V. Sheladiya, Mayursinh Gohil: A Review on Casting Defect Minimization Through Simulation. This

Read More

Fig. 4. Z-shaped section of the cylinder block

Paper Summary: Materials in Automotive Engineering

1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology 5. Key Research Findings: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material is a summary based on the above paper, and unauthorized use for commercial purposes is prohibited.Copyright © 2025 CASTMAN. All rights reserved.

Fig. 1. Squeeze casting device.

Effect of Applying Pressure of High Pressure Diecasting Process Using Salt core

1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology: 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material is a summary based on the above paper, and unauthorized use for commercial purposes is prohibited.Copyright © 2025 CASTMAN. All rights reserved.

Fig. 14. Pratt & Whitney F119 auxiliary casing in ELEKTRON WE43 alloy [37].

Magnesium casting technology for structural applications

– Core Objective of the Research: To provide a comprehensive overview of magnesium alloy melting and casting processes, examine the historical development, current status, and potential applications of structural magnesium castings, primarily focusing on the automotive industry, and discuss associated technological challenges. The increasing global demand for energy, environmental protection initiatives, and government regulations are expected

Read More

Figure 6, This casting, produced in ZE41, weighs 620 Ibs. and is the main gearbox for the Westland WG34 helicopter.

Mg Casting Alloys for the Aerospace Challenge

Abstract – Core Objective of the Research: To evaluate the advantages and disadvantages of currently available magnesium casting alloys for aerospace applications, and to develop improved alloys and casting techniques that offer enhanced high-temperature capability, improved corrosion resistance, and the ability to produce larger, more complex castings with weight savings. – Primary Methodology: The research involved a

Read More

Recent progress on cast magnesium alloy and components

Recent progress on cast magnesium alloy and components

Hecong Xie, Hua Zhao, Xin Guo, Yongfeng Li, Hengrui Hu, Jiangfeng Song, Bin Jiang & Fusheng Pan Abstract The application of cast magnesium alloy components is increasing in recent years, especially in the new energy automotive and transportation industries. As component application scenarios become increasingly complex, the performance of cast magnesium alloys needs to be further enhanced. Significant progress has been made in

Read More

Fig. 10. Photograph of (a) the composite salt core and (b) hollow-structure zinc alloy castings by this composite salt core: b1-without and b2 with water soluble removing.

Comparative study on performance and microstructure of composite
water-soluble salt core material for manufacturing hollow zinc
alloy castings

FuchuLiuabSuoTubXiaolongGongbGuanjinLibWenmingJiangbXinwangLiubZitianFanbaSchool of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan, 430074, ChinabState Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China Highlights A high-strength water-soluble composite KNO3-20 mol% KCl salt core material was successfully fabricated. Bauxite and glass-fiber powder were added and acted as

Read More

Figure 3. Buckling analysis model: boundary condition and load cases.

Experimental and Numerical Study of an Automotive Component Produced with Innovative Ceramic Core in High Pressure Die Casting (HPDC)

by  1,*, 1, 1, 2, 1, 1 and 1 1DIMI, Department of Industrial and Mechanical Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy 2Co.Stamp. s.r.l. Via Verdi 6, 23844 Sirone (LC), Italy*Author to whom correspondence should be addressed. Metals2019, 9(2), 217;Received: 14 December 2018 / Revised: 7 February 2019 / Accepted: 8 February 2019 / Published: 12 February 2019 Abstract Weight reduction

Read More