Category Archives: automotive-E

Figure 11. Micrographs of fractured (a) α-Al15(Fe,Mn,Cr)3Si2 particle and (b) β-Al5FeSi platelet after wear testing.

Designing Wear-Resistant Diecast AlSi9Cu3(Fe) Alloys for High-Temperature Components

This article introduces the paper [Design of Wear-Resistant Diecast AlSi9Cu3(Fe) Alloys for High-Temperature Components] published in the journal [Metals]. 1. Paper Overview This research focuses on enhancing the AlSi9Cu3(Fe) alloy with iron (Fe), manganese (Mn), and chromium (Cr) to develop wear-resistant diecast aluminum-silicon-copper alloys suitable for high-temperature applications. Several alloys with varying levels of iron,

Read More

Fig. 1 Pictures of one of the better castings a and c die temperature 250 °C and injection velocity 2.0 m/s, and worst castings b and d die temperature 180 °C and injection velocity 1.3 m/s for AS31

Mechanical Properties and Deformation Behaviour of High-Pressure Die-Cast Magnesium-Aluminium Based Alloys

This article introduces the paper “Mechanical Properties and Deformation Behaviour of High-Pressure Die-Cast Magnesium-Aluminium Based Alloys”. 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material was summarized based on the above paper,

Read More

Fig. 2. Improved part design

Magnesium Alloys and Applications in Automotive Industry

This article introduces the paper “Magnesium Alloys and Applications in Automotive Industry”. 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material was summarized based on the above paper, and unauthorized use for

Read More

Figure 9 A part of Al die cast product where internal soundness was improved by the application of DHA-THERMO core pins

High Thermal Conductivity Steel and its Application to Die Casting Tools

This article introduces the paper “High Thermal Conductivity Steel and its Application to Die Casting Tools” presented at the NADCA Die Casting Congress & Exposition in 2012. 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology: 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References:

Read More

Figure 2. EPMA micrograph and chemical element distribution maps of crept AA365 alloy at 373 K: Al, Mg, Fe, Si, Mn

Evaluation of Corrosion Behavior on Crept AlSi10MnMg (AA365) Alloy Produced by High-Pressure Die-Casting (HPDC)

This article introduces the paper “Evaluation of Corrosion Behavior on Crept AlSi10MnMg (AA365) Alloy Produced by High-Pressure Die-Casting (HPDC)”. 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology: 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material was summarized based on

Read More

Fig.6 Fluid field simulation result

Fatigue behavior of magnesium alloy and application in auto steering wheel frame

This article introduces the paper “Fatigue behavior of magnesium alloy and application in auto steering wheel frame,” published in Transactions of Nonferrous Metals Society of China in 2008. This paper investigates the low-cycle fatigue properties of die-cast magnesium alloys and their application in automotive steering wheel frames. 1. Overview: 2. Research Background: 3. Research Purpose

Read More

Figure 1. Schematic illustration of the rheodiecasting (RDC) process.

Development of the Rheo-Diecasting Process for Mg-Alloys

This article introduces the paper “Development of the Rheo-Diecasting Process for Mg-Alloys” by Z. Fan, S. Ji, and G. Liu, published in Materials Science Forum Vols. 488-489 (2005), pages 405-412. 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up

Read More

Fig. 1. Design comparison with steel armrest and magnesium armrest design.

Development of a bus armrest fabrication process with a high-vacuum, high-pressure die-casting process using the AM60 alloy

This article introduces the paper “Development of a bus armrest fabrication process with a high-vacuum, high-pressure die-casting process using the AM60 alloy”. 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology: 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material was

Read More

Fig. 1. 2017 Chrysler Pacifica showing the liftgate assembly highlighted by a magnesium die-cast inner [4] (Copyright 2018 by FCA. Used with permission. Chrysler is a registered trademark of FCA US LLC).

Exploring the Concept of Castability in Magnesium Die-Casting Alloys

This article introduces the paper”Exploring the concept of castability in magnesium die-casting alloys” published in the Journal of Magnesium and Alloys in 2021. The paper, authored by J.P. Weiler, delves into the multifaceted concept of castability within the magnesium die-casting industry, a critical aspect for developing advanced alloys and optimizing manufacturing processes. This summary is

Read More

Fig. 2 Subframe shape (top view)

Front Aluminum Subframe of High Level Vacuum Die-casting

This article introduces the paper “Front Aluminum Subframe of High Level Vacuum Die-casting,” published in Transactions of KSAE, Vol. 20, No. 4, pp.52-59 (2012). This paper details the development of an aluminum subframe using high level vacuum die casting to reduce weight and enhance performance compared to traditional steel subframes. 1. Overview: 2. Research Background:

Read More