Technical Resource For Aluminum Die Casting

Mathematical modeling of aluminum alloys

Mathematical modeling of aluminum alloys

Unlocking Peak Performance: How Mathematical Modeling of Aluminum Alloys Is Revolutionizing HPDC This technical summary is based on the academic ...
Fig.3 Temperature simulation of connecting bracket parts during die-casting filling process

Numerical Simulation and Process Optimization of Die-casting Aluminum Alloy Connection Bracket

Solving Porosity in Complex EV Castings: A Guide to Die Casting Process Optimization This technical summary is based on the ...
Figure1 Fraction of phase in the Scheil model (a); Fractionof phase in the DB model (b).

Investigation on Heat Treatment Process Optimization of Super-Slow-Speed Die Casting A356.2 Alloy

Optimizing A356.2 Alloy: A Data-Driven Guide to Heat Treatment in Super-Slow-Speed Die Casting (SSS HPDC) This technical summary is based ...
Fig.1 - Macrostructures.

Effect of Li additions and holding time on the mechanical properties of the AlSiM9mg alloys

Optimizing AlSi9Mg Alloys: A Deep Dive into Lithium Additions and Process Holding Time This technical summary is based on the ...
Figure 2. Tilt mold casting. 1923. Courtesy ASV now Norskhydro.

THE ROLE OF CASTING TECHNOLOGY IN THE DEVELOPMENT OF NEW AND IMPROVED FABRICATED PRODUCTS

From Puddle to Plate: How a Century of Aluminum Ingot Technology Revolutionized Modern Manufacturing This technical summary is based on ...
Castings whose properties are improved by inserts are technically challenging. However, effects such as the control of microstructure or distortion can be predicted with the help of casting simulation (Photo: MAGMA)

Material combinations in light-weight casting components

Predicting Perfection: How Casting Simulation Solves Stress and Distortion in Hybrid Lightweight Components This technical summary is based on the ...