Tag Archives: High pressure die casting

Figure 1: High Pressure Die Casting Die

Review Paper on design of Single Cavity Pressure Die Casting Die Using CAD Tool & Its Manufacturing by HPDC Technology

A Comprehensive Guide to Optimizing Your HPDC Die Design and Manufacturing Workflow This technical brief is based on the academic paper “Review Paper on design of Single Cavity Pressure Die Casting Die Using CAD Tool & Its Manufacturing by HPDC Technology” by Rakesh Bandane and Vaibhav Bankar, published in the Journal Publication of International Research

Read More

Figure 2.1: Porsche 911- rear Longitudinal rail (Magna BDW technologies Soest GmbH).

A cost-efficient process route for the mass production of thin-walled structural aluminum body castings

This introductory paper is the research content of the paper “A cost-efficient process route for the mass production of thin-walled structural aluminum body castings” published by Ergebnisse aus Forschung und Entwicklung. 1. Overview: 2. Abstract In order to meet the continuous demand for lower CO2 emissions, several approaches have been and still are extensively researched.

Read More

Fig. 3: Simulation on solidification behaviour of AM60 step casting: (a) 20%, (b) 40%, (c) 60%, and (d) 80% solidified

Section thickness-dependent tensile properties of squeeze cast magnesium alloy AM60

How Section Thickness Dictates Mechanical Strength in Squeeze Cast AM60 This technical brief is based on the academic paper “Section thickness-dependent tensile properties of squeeze cast magnesium alloy AM60” by Xuezhi Zhang, Meng Wang, Zhizhong Sun, and Henry Hu, published in CHINA FOUNDRY (2012). It is summarized and analyzed for HPDC professionals by the experts

Read More

Fig. 1. Filling of differential cover with the molten metal coloured by speed with blue being slow and red being fast. The casting is shown in top view on the left and bottom view on the right. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Short shots and industrial case studies-Understanding fluid flow and solidification in high pressure die casting

Beyond the Simulation: What ‘Short Shots’ Reveal About Real-World HPDC Defects and Model Validation This technical brief is based on the academic paper “Short shots and industrial case studies: Understanding fluid flow and solidification in high pressure die casting” by Paul W. Cleary, Joseph Ha, Mahesh Prakash, and Thang Nguyen, published in Applied Mathematical Modelling

Read More

Electric powertrain components that require temperature control. The components with a red background are particularly suitable for direct cooling.

A Breakthrough in E-Mobility: Integrating Complex Cooling Channels Directly into Die-Cast Housings

This technical summary is based on the academic paper “Leakage-free cooling channels for Die-cast housing components” published by Dirk Lehmhus, Christoph Pille, Dustin Borheck, et al. in Giesserei (2018). It was analyzed and summarized for HPDC experts by CASTMAN experts with the help of LLM AI such as Gemini, ChatGPT, and Grok. Keywords Executive Summary

Read More

Figure 2: The cast part (end head of motor) and the die.

Stop Guessing: How to Precisely Model and Optimize HPDC Venting with CFD

This technical summary is based on the academic paper “Characterizing Flow Losses Occurring in Air Vents and Ejector Pins in High Pressure Die Castings” published by M.C. Carter, S. Palit, and M. Littler in NADCA (2010). It was analyzed and summarized for HPDC experts by CASTMAN experts with the help of LLM AI such as

Read More

Fig. 4: Shrinkage [3]

Solving the Top 3 Defects in Aluminum Die Casting: A Research-Backed Guide

This technical summary is based on the academic paper “Various Type of Defects on Pressure Die Casting for Aluminium Alloys” published by Jay M. Patel, Yagnang R. Pandya, Devang Sharma, and Ravi C. Patel in the International Journal for Scientific Research & Development (2017). It was analyzed and summarized for HPDC experts by CASTMAN experts

Read More

Fig. 1. Production site and system boundaries including the relevant processes considered within the project.

A Systems Approach to Slashing Costs: How to Optimize Water and Energy Use in Your HPDC Plant

This technical brief is based on the academic paper “Potential alternative for water and energy savings in the automotive industry: case study for an Austrian automotive supplier” by Peter Enderle, Otto Nowak, and Julia Kvas, published in the Journal of Cleaner Production (2012). It is summarized and analyzed for HPDC professionals by the experts at

Read More

Fig.1 Degradation of the mold part

Extend Mold Lifespan: How Advanced PVD Coatings Combat Degradation in Aluminum HPDC

This technical brief is based on the academic paper “Possibilities of reducing the degradation of molds for high-pressure of Al alloys” by Ján Hašul and Janette Brezinová, published in INTERNATIONAL SCIENTIFIC JOURNAL “MACHINES. TECHNOLOGIES. MATERIALS” (2022). It is summarized and analyzed for HPDC professionals by the experts at CASTMAN. Keywords Executive Summary The Challenge: Why

Read More

Fig. 1. Runner System of the Modified Design

Optimization of Runner Design in Pressure Die Casting

This introduction paper is based on the paper “Optimization of Runner Design in Pressure Die Casting” published by “International Journal of Engineering Research & Technology (IJERT)”. 1. Overview: 2. Abstract: In order to produce high quality parts with high pressure die casting, computer aided simulation has been used to optimize mold designs. Finite difference (differential),

Read More