by Francesco Del Pero *,Lorenzo Berzi,Andrea Antonacci andMassimo DeloguDepartment of Industrial Engineering, University of Florence, Via di S. Marta 3, 50139 Florence, Italy*Author to whom correspondence should be addressed.Machines2020, 8(3), 51; https://doi.org/10.3390/machines8030051Received: 14 August 2020 / Revised: 30 August 2020 / Accepted: 31 August 2020 / Published: 3 September 2020 Abstract A thorough assessment of Life-Cycle effects involved by vehicle lightweighting needs a rigorous evaluation of
by Sebastian Kohlstädt 1,2,Michael Vynnycky 1,3,* andStephan Goeke 41Division of Processes, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, 100 44 Stockholm, Sweden2Volkswagen AG—Division of Components Manufacturing, Dr. Rudolf-Leiding-Platz 1, 34225 Baunatal, Germany3Department of Mathematics and Statistics, University of Limerick, Limerick V94 T9PX, Ireland4Institute of Mechanics, Kassel University, Mönchebergstr. 7, 34125 Kassel, Germany*Author to whom
settingsOpen AccessReview Current Trends in Automotive Lightweighting Strategies and Materials by Frank CzerwinskiCanmetMATERIALS, Natural Resources Canada, Hamilton, ON L8P 0A5, CanadaAcademic Editor: Carola Esposito CorcioneMaterials2021, 14(21), 6631; https://doi.org/10.3390/ma14216631Received: 17 September 2021 / Revised: 26 October 2021 / Accepted: 29 October 2021 / Published: 3 November 2021(This article belongs to the Special Issue Lightweight Structural Materials for Automotive and Aerospace) Abstract The automotive lightweighting trends, being
Minh Quang Chau†, Danh Chan Nguyen‡*, Dinh Tuyen Nguyen‡, Viet Duc Bui‡†*† Faculty of Mechanical Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam‡ Institute of Mechanical Engineering, Ho Chi Minh City University of Transport, Ho Chi Minh city, Vietnam‡† Institute of Engineering, Ho Chi Minh city University of Technology (HUTECH),
Summary of “Automobile Parts Casting-Methods and Materials Used: A Review” This material is based on the paper “Automobile Parts Casting-Methods and Materials Used: A Review” by Madhav Goenka, Chico Nihal, Rahul Ramanathan, Pratyaksh Gupta, Aman Parashar, and Joel Jb.Paper Source: https://doi.org/10.1016/j.matpr.2020.03.518 1. Overview: 2. Research Background: 3. Research Objectives and Research Questions: 4. Research Methodology
by Sebastian Kohlstädt 1,2,Michael Vynnycky 1,3,* andStephan Goeke 41Division of Processes, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, 100 44 Stockholm, Sweden2Volkswagen AG—Division of Components Manufacturing, Dr. Rudolf-Leiding-Platz 1, 34225 Baunatal, Germany3Department of Mathematics and Statistics, University of Limerick, Limerick V94 T9PX, Ireland4Institute of Mechanics, Kassel University, Mönchebergstr. 7, 34125 Kassel, Germany*Author to whom
by Filip Nikolić 1,2,3,Ivan Štajduhar 4,* andMarko Čanađija 1,*1Department of Engineering Mechanics, Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia2Research and Development Department, CIMOS d.d. Automotive Industry, 6000 Koper, Slovenia3CAE Department, Elaphe Propulsion Technologies Ltd., 1000 Ljubljana, Slovenia4Department of Computer Engineering, Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia*Authors to whom correspondence should be addressed. Abstract This paper
The High Pressure Die Casting Market is segmented by Raw Material (Aluminum, Zinc, and Magnesium), Application (Automotive, Electrical and Electronics, Industrial Applications, and Other Applications), and Geography. Reference Source : https://www.mordorintelligence.com/industry-reports/high-pressure-die-casting-market Market Snapshot Market Overview The high pressure die casting market is estimated to register a CAGR of 6.36% during the forecast period, 2020-2025. The
2021년 4월 12일 We are accepting orders for developing prototype electric motors featuring industry-leading output density for use in automobiles and other vehicles. Yamaha Motor is working to create electric motors that are compact, high-output and stir the senses by leveraging our technology and expertise in casting, machining, the use of high-efficiency segment conductors and
New DuckerFrontier survey finds aluminum remains fastest growing automotive material, emerging as a preferred metal for EVs orgin article: New DuckerFrontier survey finds aluminum remains fastest growing automotive material, emerging as a preferred metal for EVs – Green Car Congress 13 August 2020 A new survey conducted by DuckerFrontier finds that aluminum, already the fastest growing automotive material, is