Tag Archives: Mechanical Property

Figure 1. SEM micrograph of nano ZrO2 particles.

EFFECT OF NANO ZIRCONIUM OXIDE (ZrO2) PARTICLES ADDITION ON THE MECHANICAL BEHAVIOUR AND TENSILE FRACTOGRAPHY OF COPPER-TIN (Cu-Sn) ALLOY NANO COMPOSITES

Boosting Copper-Tin Alloy Performance: How Nano ZrO2 Reinforcement Unlocks Superior Mechanical Strength This technical summary is based on the academic paper “EFFECT OF NANO ZIRCONIUM OXIDE (ZrO2) PARTICLES ADDITION ON THE MECHANICAL BEHAVIOUR AND TENSILE FRACTOGRAPHY OF COPPER-TIN (Cu-Sn) ALLOY NANO COMPOSITES” by Prasad H. Nayak et al., published in Structural Integrity and Life (2022).

Read More

Mathematical modeling of aluminum alloys

Mathematical modeling of aluminum alloys

Unlocking Peak Performance: How Mathematical Modeling of Aluminum Alloys Is Revolutionizing HPDC This technical summary is based on the academic paper “Mathematical modeling of aluminum alloys” by Adelina Miteva, Margarita Dimitrova, published in INTERNATIONAL SCIENTIFIC JOURNAL “MATHEMATICAL MODELING” (2024). Keywords Executive Summary The Challenge: Why This Research Matters for HPDC Professionals In modern industries from

Read More

Fig. 1. Integrated fully automatic HPDC cell: (a) furnace, melt feeding and casting extraction; (b) heating, cooling and spraying units; (c) HPDC die and die temperature control systems.

Effect of high pressure die casting on the castability, defects and mechanical properties of aluminium alloys in extra-large thin-wall castings

Redefining HPDC Castability: How Effective Flow Length (EFL) Unlocks Ductility in Extra-Large Structural Components This technical summary is based on the academic paper “Effect of high pressure die casting on the castability, defects and mechanical properties of aluminium alloys in extra-large thin-wall castings” by Zhichao Niu, Guangyu Liu, Tian Li, and Shouxun Ji, published in

Read More

Fig.1 - Schematics of the casting moulds: (a) Chill sample and (b) PCM sample.

Numerical simulation of the effects of a Phase Change Material (PCM) on solidification path of gravity sand cast Al-Cu alloy

Extending Columnar Growth: How Phase Change Materials Are Revolutionizing Solidification Control in Al-Cu Castings This technical summary is based on the academic paper “Numerical simulation of the effects of a Phase Change Material (PCM) on solidification path of gravity sand cast Al-Cu alloy” by Z. Noohi, B. Niroumand, and G. Timelli, published in La Metallurgia

Read More

Fig.1. Six mega Al castings in Cadillac Celestiq [3].

Ultra-Large Aluminum Castings in Automobiles

The Giga-Casting Challenge: Key Factors for Defect-Free Ultra-Large Aluminum Parts This technical summary is based on the academic paper “Ultra-Large Aluminum Castings in Automobiles” by Qigui Wang, Andy Wang, and Jason Coryell, published in The 75th World Foundry Congress (2024). Keywords Executive Summary The Challenge: Why This Research Matters for HPDC Professionals The automotive industry

Read More

Fig. 1 SEED pulping process principle [3]

Effect of T6 Treatment on Microstructures and Mechanical Properties of Semi-Solid A356 Alloy

Unlocking Peak Performance in A356 Alloy: A Deep Dive into T6 Heat Treatment for Semi-Solid Die Casting This technical summary is based on the academic paper “Effect of T6 Treatment on Microstructures and Mechanical Properties of Semi-Solid A356 Alloy” by Jun Zhou, Caihua Wang*, and Larry Wang, published in The 75th World Foundry Congress (2024).

Read More

Figure 2: Hardness Testing Specimen

Mechanical Properties of Al6061- Al2O3 Metal Matrix Composite Using Die Casting Technique

Boosting Al6061 Performance: A Deep Dive into Al2O3 Reinforced Metal Matrix Composites via Die Casting This technical summary is based on the academic paper “Mechanical Properties of Al6061- Al2O3 Metal Matrix Composite Using Die Casting Technique” by Mahendra HM, Prakash GS, Prasad KSK, and Rajanna, published in the Journal of Material Science and Metallurgy (2018).

Read More

Fig. 1. Recycled ingots

Effect of Chip Amount on Microstructural and Mechanical Properties of A356 Aluminum Casting Alloy

Maximizing Recycled A356 Aluminum: A Data-Driven Guide to Balancing Cost and Performance This technical summary is based on the academic paper “Effect of Chip Amount on Microstructural and Mechanical Properties of A356 Aluminum Casting Alloy” by A.Y. Kaya et al., published in ARCHIVES of FOUNDRY ENGINEERING (2021). Keywords Executive Summary The Challenge: Why This Research

Read More

Figure 6: An ADI prototype bracket with a continuous 3mm wall.

Austempered Ductile Iron (ADI) – A Green Alternative

Rethinking Lightweighting: Why Austempered Ductile Iron (ADI) Offers a More Sustainable Alternative to Steel and Aluminum This technical summary is based on the academic paper “Austempered Ductile Iron (ADI) – A Green Alternative” by John R. Keough, PEng, FASM, published in April 2010. Keywords Executive Summary The Challenge: Why This Research Matters for HPDC Professionals

Read More

Figure 1. Used molds and presses

Impact of Aspect Ratio on the Mechanical Properties of Squeeze-Cast Aluminum Alloys

Optimizing AA6061 Performance: How Component Geometry Dictates Squeeze Casting Process Success This technical summary is based on the academic paper “IMPACT ASPECT RATIO ON MECHANICAL PROPERTIES OF ALUMINUM ALLOY PRODUCED BY SQUEEZE CASTING PROCESS” by S.S. Mutar and N.S. Abtan, published in the International Journal on “Technical and Physical Problems of Engineering” (IJTPE) (2023). Keywords

Read More