S. Cecchel, D. Ferrario The purpose of the present paper is to enhance and deepen the lightweight optimization in automotive, in particularfor commercial vehicles and buses. In detail, aim of this research is to develop a technically reliable and cost effectivesafety component for Light Commercial Vehicles (LCVs) in aluminum alloy. At this purpose, different solutions
Abstract. Due to increasing environmental concerns, battery-powered electric vehicles (BEV) have gained popularity in the automotive for the past few years. An induction motor is an essential component of the propulsion system in integrated BEVs working on different operating conditions [1]. Since a rotor of the induction motor is configured with an electrical sheet, a
G.CampatelliA.Scippa Abstract In High Pressure Die Casting (HPDC), geometrical distortions usually happen during the cooling phase, due to the reduced cooling time and the high thermal gradient inside the product itself. This phenomenon affects most the thin walled products. The usual die design practice considers only the linear shrinking of the product during the cooling as a consequence of
고압 다이캐스팅의 열처리 Metallurgical and Materials Transactions A volume 38, pages2564–2574 (2007)Cite this article Abstract High-pressure die-cast Al alloys cannot normally be heated at high temperatures due to the presence of pores containing entrapped gases, which lead to the formation of surface blisters. It has been found that blistering can be avoided by using considerably shorter solution-treatment times
OksanaOzhoga-MaslovskajaElisabettaGariboldiJannis NicolasLemkeShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.matdes.2015.12.003Get rights and content Highlights • Critical conditions for blister formation of Al–9Si–3Cu–Fe alloy are identified via a FE model.• Blister formation is modeled for wide range of temperatures, pore pressure, shape, location, and size.• Strain field shows blister formation related to strain localization, depending of pore geometry.• Lamina-shaped discontinuities
XixiDongaHailinYangbXiangzhenZhuaShouxunJiaShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.jallcom.2018.09.260Get rights and content Abstract A high strength (Yield strength ≥ 320 MPa) and high ductility (Tensile elongation ≥ 10%) die–cast aluminium alloy was first developed. The AlSiCuMgMn alloy processed by high pressure die casting can provide the high yield strength of 321 MPa, the high ultimate tensile strength of 425 MPa and the high ductility of 11.3%, after solution treated at
D. T. PetersCopper Development Association Inc.Hilton Head Island, SCJ. G. CowieCopper Development Association Inc.New York, NYE. F. Brush, Jr.Copper Development Association Inc.Weston, MAS. P. MidsonCopper Development Association Inc.Denver, CO Abstract Little use has been made of pressure die casting for the manufacture of copper or copper alloy parts due in large part to poor economics
Gerry GangWangJ.P.WeilerMeridian Lightweight Technologies, Strathroy, Ontario N7G 4H6, Canada Abstract The use of magnesium alloy high pressure die cast (HPDC) components for structural applications, especially in the automotive and transportation industries, where weight reduction is of a great concern, is increasing. As new applications are developing and existing applications are becoming more complex, there is a need
진공도가 알루미늄 다이캐스팅의 다공성과 기계적 성질에 미치는 영향 Author links open overlay panelHanxueCaoabMengyaoHaoaChaoShenaPengLiangaShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.vacuum.2017.09.048Get rights and content Abstract AlSi9Cu3 alloy castings were produced by the vacuum-assisted high pressure die casting (HPDC) process under three different absolute pressures: 500 mbar, 200 mbar and 100 mbar. The influence of absolute pressure in the die cavity on the porosity, microstructure
Tülay Hançerlioğlu 1*1 R&D Department Nemak İzmir Döküm San.A.Ş. tulay.hancerlioglu@nemak.com Orcid: 0000-0003-2373-4405Received: 6 December 2021Accepted: 1 June 2022DOI: 10.18466/cbayarfbe.1033177 Abstract For creating complex geometric shapes in the cast part, salt was used to produce core instead of sandwhich is thermo-chemical or chemical process using resin as a binder. In salt core casting, the efficiencywill be