Xiaolong Gong, Xiongjie Xiao, Xinwang Liu & Zitian Fan Received 03 Apr 2022, Accepted 21 Apr 2022, Published online: 13 May 2022 Download citation https://doi.org/10.1080/10426914.2022.2072887 CrossMark ABSTRACT In this work, the high-strength composite salt cores reinforced by corundum powder were successfully prepared using 30 mol% Na2SO4 +70 mol% NaCl as the matrix materials, which can be used to fabricate
Author links open overlay panelAndreasSchillingDanielSchmidtJakobGlückNiklasSchwenkeHusamSharabiMartinFehlbierShow moreAdd to MendeleyShareCite https://doi.org/10.1016/j.simpat.2022.102585Get rights and content Under a Creative Commons license Open access Abstract In this work, a simulations study on the impact on gravity cast salt cores was carried out for the different casting parameters in high pressure die casting as well as in rheocasting. To compare the simulation results, salt cores were
Xue-ting Wang, Wei-hua Liu, Xuan-yu Liu & Lai Song International Journal of Metalcasting (2022)Cite this article 84 Accesses 1 Citations Metricsdetails Abstract In this paper, the interfacial energy of various inorganic salts was calculated using the first principle. Finally, NaCl and Na2SO4 were determined as the core materials. A high-strength composite salt core was prepared by optimizing the distribution ratio
Xiaolong Gong, Wenming Jiang , Fuchu Liu, Zhiyuan Yang, Feng Guan, and Zitian FanState Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science andTechnology, Wuhan 430074, China Copyright 2020 American Foundry Societyhttps://doi.org/10.1007/s40962-020-00480-9 Abstract The water-soluble salt core with higher bending strength and toughness is necessary to withstand the high pressure
A.HamasaiidaG.DouraT.LouloucM.S.DarguschbaUniversité de Toulouse, INSA, UPS, Mines Albi, ISAE, ICA (Institut Clément Ader), CROMeP, Campus Jarlard, F-81013 Albi Cedex 09, FrancebCAST Cooperative Research Centre, School of Engineering, The University of Queensland, St. Lucia, Brisbane QLD 4072, AustraliacUniversité de Bretagne-Sud, LIMAT B, rue de Saint-Maudé, 56321 Lorient, France Abstract An analytical model is proposed to predict the
David Blondheim Jr. & Alex Monroe Abstract Porosity formation in high pressure die casting (HPDC) impacts mechanical properties and casting quality. Much is published regarding micro porosity and its impact on mechanical properties, but there is limited research on the actual formation of macro porosity. In production applications, macro porosity plays a critically important role in casting
YongfaZhangabc FuhuiShenb JiangZhengcd SebastianMünstermannb TianjiaoLic WeijianHanef ShiyaoHuangef Highlights •The microstructure and ductile fracture characteristics of the aluminum alloy (Aural-2) produced by high-pressure die casting have been thoroughly characterized via experimental and numerical approaches. •Stochastic ductile fracture property observed over a wide range of stress states of the studied material could be captured by the proposed classic ductile damage model
도전적인 알루미늄 HPDC 자동차 부품을 위한 로컬 스퀴즈 기술 Elisa Fracchia, Federico Simone Gobber, Claudio Mus, Raul Pirovano & Mario Rosso First Online: 05 February 2022 Part of the The Minerals, Metals & Materials Series book series (MMMS) Abstract A key issue in producing high-quality aluminium automotive components by the High-Pressure Die Casting process (HPDC) is minimizing the defects. For the HPDC technology,
Jun Yaokawa, Daisuke Miura, Koichi Anzai, Youji Yamada, Hiroshi Yoshii Abstract The strength of four binary systems NaCl–Na2CO3, KCl–K2CO3, KCl–NaCl and K2CO3–Na2CO3 was investigated in order to develop expendable salt core for high pressure die casting processes. Four point bending test was conducted to determine the strength of specimens made from molten salts by using the permanent mold casting technique.
Xiaolong Gong, Fuchu Liu, Xinwang Liu, Wenming Jiang & Zitian Fan International Journal of Metalcasting (2022)Cite this article Abstract A composite inorganic salt core with good water solubility and formability was proposed using potassium nitrate (KNO3) and potassium chloride (KCl) as base materials. The KNO3–KCl molar ratio has been optimized for the KNO3–KCl composite salt core, and