Tag Archives: Mechanical Property

Fig. 1 Liquidus surface and eutectic line of Na⁺-K⁺-Cl⁻-CO₃²⁻ system calculated with Thermo-Calc¹⁵).

Bending Strength of Salt Core Comprised of KCl-NaCl-Na₂CO₃-K₂CO₃ Systems

This article introduces the paper “Bending Strength of Salt Core Comprised of KCl-NaCl-Na2CO3-K2CO3 Systems” presented at the J. JFS, Vol. 79, No. 4 (2007) pp. 184~191 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9.

Read More

Fig. 14. An open-ended integrally-stiffened prepreg panel (a) NT Core in position and (b) after NT Core removal, showing blind hole.

A Water-Soluble Core Material for Manufacturing Hollow Composite Sections

This article introduces the paper “A water-soluble core material for manufacturing hollow composite sections presented in Composite Structures”. 1. Overview: 2. Research Background: Social/Academic Context of the Research Topic Core materials play a crucial role in composite structures by enhancing the second moment of area and improving bending stiffness. While foam materials are commonly used

Read More

Fig. 2.1 Graphical illustration of hot chamber diecasting [5].

Development of High Strength Al-Mg2Si-Mg Based Alloy for High Pressure Diecasting Process

This article introduces the paper “Development of High Strength Al-Mg2Si-Mg Based Alloy for High Pressure Diecasting Process” presented as a thesis submitted for the degree of Doctor of Philosophy at Brunel University 1. Overview: 2. Research Background: The automotive industry is increasingly utilizing lightweight materials like aluminium alloys to enhance fuel efficiency and reduce CO2

Read More

Figure 1. Structure of the vacuum die-cast equipment

Study on Microstructures and Properties of Al. Alloy Vacuum Die-Cast Parts

This article introduces the paper “Study on Microstructures and Properties of the Al. Alloy Vacuum Die-Cast Parts of TL117 and C611” presented in the Journal of Physics: Conference Series. 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology: 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research:

Read More

Figure 13. The schematic diagrams of the ACSR Rheo-HPDC process (reprinted with permission from ref. [36], 2022, Elsevier).

Research Progress on Thermal Conductivity of High-Pressure Die-Cast Aluminum Alloys

This article introduces the paper “Research Progress on Thermal Conductivity of High-Pressure Die-Cast Aluminum Alloys” presented at the Metals, MDPI 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material is Yixian Liu

Read More

Figure 1. Sampling region on the plate manufactured by HPDC.

Phase-Field Modelling of Bimodal Dendritic Solidification During Al Alloy Die Casting

This article introduces the paper “Phase-Field Modelling of Bimodal Dendritic Solidification During Al Alloy Die Casting” presented in Metals. 1. Overview: Title: Phase-Field Modelling of Bimodal Dendritic Solidification During Al Alloy Die CastingAuthors: Maryam Torfeh, Zhichao Niu and Hamid AssadiPublication Year: 2025Publishing Journal: MetalsKeywords: phase-field modelling; HPDC; interface behaviour 2. Research Background: High-pressure die casting

Read More

Figure 5. Results of constrained rod casting: (a) AA7075; (b) AA7068; (c) AA7055.

Development of Low-Pressure Die-Cast Al–Zn–Mg–Cu Alloy Propellers—Part I: Hot Tearing Simulations for Alloy Optimization

This article introduces the paper “Development of Low-Pressure Die-Cast Al–Zn–Mg–Cu Alloy Propellers—Part I: Hot Tearing Simulations for Alloy Optimization” presented in Materials Journal. 1. Overview: High-Strength Aluminum Alloy Propellers, Addressing Hot Tearing Issues Through Alloy Optimization Research 2. Research Background: Demand for High-Performance Leisure Boat Propellers, Hot Tearing Challenges in 7xxx Series Alloys 3. Research

Read More

Figure 2. EPMA micrograph and chemical element distribution maps of crept AA365 alloy at 373 K: Al, Mg, Fe, Si, Mn

Evaluation of Corrosion Behavior on Crept AlSi10MnMg (AA365) Alloy Produced by High-Pressure Die-Casting (HPDC)

This article introduces the paper “Evaluation of Corrosion Behavior on Crept AlSi10MnMg (AA365) Alloy Produced by High-Pressure Die-Casting (HPDC)”. 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology: 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material was summarized based on

Read More

Figure 1. Schematic illustration of the rheodiecasting (RDC) process.

Development of the Rheo-Diecasting Process for Mg-Alloys

This article introduces the paper “Development of the Rheo-Diecasting Process for Mg-Alloys” by Z. Fan, S. Ji, and G. Liu, published in Materials Science Forum Vols. 488-489 (2005), pages 405-412. 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up

Read More

Fig. 1. Design comparison with steel armrest and magnesium armrest design.

Development of a bus armrest fabrication process with a high-vacuum, high-pressure die-casting process using the AM60 alloy

This article introduces the paper “Development of a bus armrest fabrication process with a high-vacuum, high-pressure die-casting process using the AM60 alloy”. 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology: 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material was

Read More