Ya’nan Wu1, a, Guojie Huang1, b, Lei Cheng1,c, Daniel Liang2,d, Wei Xiao1,e1State Key Laboratory of Nonferrous Metals and Processes, General Research Institute forNonferrous Metals, Beijing 100088, China2Motor System,International Copper Association Asia, Tian Zuo International Center,Beijing 100081, Chinaaynwu19@163.com, bhuangguojie@grinm.com, cchenglei@grinm.com,dDaniel.liang@copperalliance.asia, ewxiao@ustb.edu.cn Keywords: Numerical Simulation, Copper Rotors, FLOW-3D, Die Casting. Abstract The parametric optimization of process parameter
1. Overview: 2. Research Background: In metalcasting, cores are essential components utilized to create internal geometries and voids within cast products. The selection and performance of cores are significantly influenced by the casting technique employed, ranging from gravity casting to high pressure die casting. As component designs become increasingly complex and environmental regulations more stringent,
Michail Papanikolaou, Prateek SaxenaSustainable Manufacturing Systems Centre, Manufacturing Theme, Cranfield University, Cranfield, United Kingdom Available online 1 April 2021. Abstract Since the 1980s, the evolution of the computing power as well as the advances in numerical modeling techniques have allowed for the development of accurate casting simulation solutions. Although casting processes involve a series of
by Bing Zhou,Yonglin Kang *,Mingfan Qi,Huanhuan Zhang andGuoming ZhuSchool of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China*Author to whom correspondence should be addressed.Materials2014, 7(4), 3084-3105; https://doi.org/10.3390/ma7043084Received: 24 March 2014 / Revised: 4 April 2014 / Accepted: 4 April 2014 / Published: 15 April 2014(This article belongs to the Special Issue Light Alloys and Their Applications)
by Daliang Yu 1,Wen Yang 2,Wanqing Deng 2,Songzhu Zhu 2,Qingwei Dai 1,3,* andDingfei Zhang 31School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China2Chongqing Zhicheng Machinery Co., LTD, Chongqing 400039, China3College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China*Author to whom correspondence should be addressed.Metals2021, 11(1), 97; https://doi.org/10.3390/met11010097Received: 27 November 2020 / Revised: 25 December 2020 / Accepted:
SazianaSamat, Mohd Zaidi, OmarAmir Hossein Baghdadi, Intan Fadhlina Mohamed, Ahmad Muhammad AzizDepartment of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Malaysia Abstract The thixoforming process with feedstock preparation yields a fine microstructure and enhanced mechanical properties relative to other traditional casting processes. However, the thixoforming process
This introduction paper is based on the paper “A brief review of the technology in piston machining to goal the product localization in Vietnam” published by “[Journal/academic society of publication not explicitly stated in the paper]”. 1. Overview: 2. Abstract: The recent rapid growth of the Vietnamese automobile market is convincing proof that the Government
AndreasSchillingaKaiSalscheideraHenrikRuschebHrvojeJasakbMartinFehlbieraSebastianKohlstädtcaUniversity of Kassel, Department of Foundry Technology, Kurt-Wolters-Str. 3, 34125 Kassel, GermanybWikki GmbH, Ziegelbergsweg 68, 38855 Wernigerode, GermanycVolkswagen AG, Division of components manufacturing – Business Unit Casting Dr. Rudolf-Leiding-Platz 1, 34225 Baunatal, Germany Abstract In this work, a toolchain for the solidification and the shrinkage of cast salt cores used in high-pressure die casting is
by Sebastian Kohlstädt 1,2,Michael Vynnycky 1,3,* andStephan Goeke 41Division of Processes, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, 100 44 Stockholm, Sweden2Volkswagen AG—Division of Components Manufacturing, Dr. Rudolf-Leiding-Platz 1, 34225 Baunatal, Germany3Department of Mathematics and Statistics, University of Limerick, Limerick V94 T9PX, Ireland4Institute of Mechanics, Kassel University, Mönchebergstr. 7, 34125 Kassel, Germany*Author to whom
Sang-SooShina, Sang-KeeLeeb, Dae-KyeomKimc, BinLeecaR&D Center, Oh-Sung Tech Co. Ltd., Siheung, 15112, Republic of KoreabDepartment of Advanced Material Application, Daegu Campus of Korea Polytecnic, Daegu, 41765, Republic of KoreacKorea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon, 21999, Republic of Korea Abstract The cooling efficiency of aluminum die-casting molds is critical to prevent soldering,