Tag Archives: Alloying elements

Fig. 6. Pit-tail test result of HPDC MRI 260D tensile bar (as-cast).

Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications

Next-Gen HPDC Magnesium Alloys: A Guide to Higher Strength, Ductility, and Performance This technical summary is based on the academic paper “Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications” by Gerry Gang Wang and J.P. Weiler, published in Journal of Magnesium and Alloys (2023). Keywords Executive Summary The Challenge: Why This

Read More

Fig 2 Typical microstructure of type A357.0 hypoeutectic alloy.

Friction and Wear of Aluminum-Silicon Alloys

Unlocking Superior Durability: The Science Behind Aluminum-Silicon Alloy Wear Resistance in HPDC This technical summary is based on the academic paper “Friction and Wear of Aluminum-Silicon Alloys” by Barrie S. Shabel, Douglas A. Granger, and William G. Truckner, published in ASM Handbook, Volume 18: Friction, Lubrication, and Wear Technology (1992). Keywords Executive Summary The Challenge:

Read More

Figure 3: Whitening of cast iron due to the penetration of tellurium.

Investigating the Microscopic Structure of Cast Iron and Its Application in Industry

From Lab to Production Line: How Cast Iron Microstructure Analysis Boosts Component Performance This technical summary is based on the academic paper “Investigating the Microscopic Structure of Cast Iron and Its Application in Industry” by Milad Karimi, published in Journal of Engineering in Industrial Research (2023). Keywords Executive Summary The Challenge: Why This Research Matters for Casting

Read More

Fig. 8 Characteristic of cycle step

Aluminum Arc Welding Technology to Improve Quality and Productivity of Electric Vehicles

A Deep Dive into Aluminum Arc Welding: Boosting Quality and Productivity in Electric Vehicles This technical summary is based on the academic paper “Aluminum Arc Welding Technology to Improve Quality and Productivity of Electric Vehicles” by Woohyeon Ju, Taewan Kim, and Yoochan Kim, published in the Journal of Welding and Joining (2022). Keywords Executive Summary

Read More

Fig. 1 Interdendritic spaces of the AlSi12NiMgCu alloy filled with rough phases Al5FeSi (Fe content 0.82 [wt. %]) [9]

Analysis of the Increased Iron Content on the Corrosion Resistance of the AlSi7Mg0.3 Alloy Casting

Increased Iron in AlSi7Mg0.3: A Corrosion Risk or a Cost-Saving Opportunity? This technical summary is based on the academic paper “Analysis of the Increased Iron Content on the Corrosion Resistance of the AlSi7Mg0.3 Alloy Casting” by Jaroslava Svobodova, Milan Lunak, and Michal Lattner, published in Manufacturing Technology (2019). It has been analyzed and summarized for

Read More

Figure 2: Gray cast iron.

Investigating the Microscopic Structure of Cast Iron and Its Application in Industry

From Lab to Production Line: How Cast Iron Microstructure Analysis Boosts Component Performance This technical summary is based on the academic paper “Investigating the Microscopic Structure of Cast Iron and Its Application in Industry” by Milad Karimi, published in Journal of Engineering in Industrial Research (2023). Keywords Executive Summary The Challenge: Why This Research Matters

Read More

Figure 1 The aluminium life cycle

The Chemical Composition of Post-Consumer Aluminium Scrap – A Challenge in Aluminium Recycling

The Recycled Aluminum Dilemma: Mastering Chemical Composition for High-Integrity Die Casting This technical summary is based on the academic paper “The Chemical Composition of Post-Consumer Aluminium Scrap – A Challenge in Aluminium Recycling” by Ciprian Bulei, Imre Kiss, and Mihai–Paul Todor, published in Acta Polytechnica Hungarica (2023). Keywords Executive Summary The Challenge: Why This Research

Read More

Fig. 9. Freezing time [s] of materials CP-Al, 2124, 2218, and 6063 prepared at 0, 25, 75, 100, 125 and 150 MPa

EFFECT OF LIQUID FORGING PRESSURE ON SOLUBILITY AND FREEZING COEFFICIENTS OF CAST ALUMINUM 2124, 2218 AND 6063 ALLOYS

How Liquid Forging Pressure Unlocks Superior Hardness and Reduces Porosity in Aluminum Alloys This technical summary is based on the academic paper “EFFECT OF LIQUID FORGING PRESSURE ON SOLUBILITY AND FREEZING COEFFICIENTS OF CAST ALUMINUM 2124, 2218 AND 6063 ALLOYS” by Vineet Tirth and Amir Arabi, published in Archives of Metallurgy and Materials (2020). It

Read More

Fig. 2 Macrostructure of AlSi10.5Cu1.2Mn0.8Ni1.2Pb0.5 alloy a) sand mold b) metal mold

The Effect of Casting Mold Material on Microstructure of Al-Si Alloys

Paper Title Metal vs. Sand Molds: How Cooling Rate Dictates Al-Si Alloy Microstructure and Performance This technical summary is based on the academic paper “The Effect of Casting Mold Material on Microstructure of Al-Si Alloys” by Tomas Vlach and Jaromir Cais, published in MANUFACTURING TECHNOLOGY (2022). It has been analyzed and summarized for technical experts

Read More

Fig. 1. Microstructure of AlZn10Si8Mg cast alloy, etch. Fuss (full colour version available online)

CHARACTERIZATION OF PHASES IN SECONDARY AlZn10Si8Mg CAST ALLOY

Unlocking Performance in Recycled Aluminum: A Deep Dive into Secondary AlZn10Si8Mg Alloy Microstructure This technical summary is based on the academic paper “CHARACTERIZATION OF PHASES IN SECONDARY AlZn10Si8Mg CAST ALLOY” by Eva Tillová, Emília Ďuriníková, and Mária Chalupová, published in Materials Engineering – Materiálové inžinierstvo (2011). Keywords Executive Summary The Challenge: Why This Research Matters

Read More