This article introduces the paper “Advanced casting technologies for lightweight automotive applications”. 1. Overview: 2. Background: Lightweighting in the automotive industry is crucial for improving fuel efficiency. Aluminum and magnesium castings have been utilized for this purpose for a considerable time, gaining significant traction since the mid-1970s. Aluminum castings offer a 30-50% mass reduction compared
This article introduces the paper “Development of water soluble cores for investment casting – A review” presented in INDIAN ENGINEERING EXPORTS 1. Overview: 2. Research Background: Investment Casting utilizes wax patterns for creating complex castings. Cores are essential for forming internal geometries like undercuts and channels within these castings. Traditionally, core removal post-casting involves methods
This article introduces the paper “[Casting of Combustion Engine Pistons Before and Now on the Example of FM Gorzyce]” 1. Overview: 2. Research Background: Social/Academic Context: Combustion engine pistons face increasingly stringent demands driven by the need for enhanced thermo-mechanical loads, reduced exhaust emissions, and improved fuel efficiency. The automotive industry’s push for lighter vehicles
This article introduces the paper “Influence of Die Temperature in High Pressure Die Casting of Thin-Walled Components” by M. Wessén and L. Näslund: 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material
This article introduces the paper “Development of High Strength Al-Mg2Si-Mg Based Alloy for High Pressure Diecasting Process” presented as a thesis submitted for the degree of Doctor of Philosophy at Brunel University 1. Overview: 2. Research Background: The automotive industry is increasingly utilizing lightweight materials like aluminium alloys to enhance fuel efficiency and reduce CO2
This article introduces the paper “Study on the Influence of Injection Velocity on the Evolution of Hole Defects in Die-Cast Aluminum Alloy” presented at the MDPI 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9.
This article introduces the paper “Research Progress on Thermal Conductivity of High-Pressure Die-Cast Aluminum Alloys” presented at the Metals, MDPI 1. Overview: 2. Research Background: 3. Research Purpose and Research Questions: 4. Research Methodology 5. Main Research Results: 6. Conclusion and Discussion: 7. Future Follow-up Research: 8. References: 9. Copyright: This material is Yixian Liu
This article introduces the paper “Phase-Field Modelling of Bimodal Dendritic Solidification During Al Alloy Die Casting” presented in Metals. 1. Overview: Title: Phase-Field Modelling of Bimodal Dendritic Solidification During Al Alloy Die CastingAuthors: Maryam Torfeh, Zhichao Niu and Hamid AssadiPublication Year: 2025Publishing Journal: MetalsKeywords: phase-field modelling; HPDC; interface behaviour 2. Research Background: High-pressure die casting
This article introduces the paper “Development of Low-Pressure Die-Cast Al–Zn–Mg–Cu Alloy Propellers—Part I: Hot Tearing Simulations for Alloy Optimization” presented in Materials Journal. 1. Overview: High-Strength Aluminum Alloy Propellers, Addressing Hot Tearing Issues Through Alloy Optimization Research 2. Research Background: Demand for High-Performance Leisure Boat Propellers, Hot Tearing Challenges in 7xxx Series Alloys 3. Research
This article introduces the paper [Design of Wear-Resistant Diecast AlSi9Cu3(Fe) Alloys for High-Temperature Components] published in the journal [Metals]. 1. Paper Overview This research focuses on enhancing the AlSi9Cu3(Fe) alloy with iron (Fe), manganese (Mn), and chromium (Cr) to develop wear-resistant diecast aluminum-silicon-copper alloys suitable for high-temperature applications. Several alloys with varying levels of iron,